An overview on Modulated Scattering Sensors and their applications

From Top Italian Scientists Journal
March 1, 2024
An overview on Modulated Scattering Sensors and their applications
Massimo Donelli
Microwave, electromagnetic propagation, modulated scattering technique, RFIDs.
Download PDF
Download PDF

Massimo Donelli(a,b,c)

(a) Department of Civil, Environmental and Mechanical Engineering (DICAM), University of Trento, Trento 38123, Italy

(b) Center for Security and Crime Sciences, University of Trento and Verona, Italy

(c) Radiomic Laboratory, Department of Economy and Management (DEM)University of Trento, Italy

Correspondence to: Massimo Donelli,


Modulated scattering sensors are based on the scattering properties of small antennas. They operate similarly to radio frequency identifier RFIDs but they don't require a radio front-end, and with respect to RFIDs, which are characterized by a limited operative range, MST sensors can theoretically reach any distance up to kilometres. The information is carried on by modulating an impinging/interrogating electromagnetic wave by properly change the load impedance of the antenna sensor, with suitable resistive loads and electronic switches. MST sensors can also operate at microwave frequency bands thanks to the introduction of suitable MEMs switches able to operate up to 100 GHz, moreover they are simple, low invasive and very cheap. In this work the evolution and some recent advancements in the development and application of MST sensors at different engineering scenarios will be reported and commented.


Conflict of Interest

The Author declares that there is no conflict of interest.


The author has no funding sources to report.

Author Contributions

MD: Conceptualization, Investigation, Methodology, Data Collection, Data Analysis, Writing – Review & Editing.


  1. L. Shu, Y. Chen, Z. Sun, F. Tong and M. Mukherjee, "Detecting the Dangerous Area of Toxic Gases with Wireless Sensor Networks," in IEEE Transactions on Emerging Topics in Computing, vol. 8, no. 1, pp. 137-147, 1 Jan.-March 2020, doi: 10.1109/TETC.2017.2700358.
  2. A. Girma et al., "IoT-enabled autonomous system collaboration for disaster-area management," in IEEE/CAA Journal of Automatica Sinica, vol. 7, no. 5, pp. 1249-1262, September 2020, doi: 10.1109/JAS.2020.1003291.
  3. Y. Ismail, M. Hammad and W. El-Medany, "Homeland Security Video Surveillance System for Smart Cities," 2018 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT), Sakhier, Bahrain, 2018, pp. 1-4, doi: 10.1109/3ICT.2018.8855732.
  4. A. Mostaccio, G. M. Bianco, G. Marrocco and C. Occhiuzzi, "RFID Technology for Food Industry 4.0: A Review of Solutions and Applications," in IEEE Journal of Radio Frequency Identification, vol. 7, pp. 145-157, 2023, doi: 10.1109/JRFID.2023.3278722.
  5. Z. Ye, M. Yang, Y. Ren, C. -H. J. Hung, C. -T. M. Wu and P. -Y. Chen, "Review on Recent Advances and Applications of Passive Harmonic RFID Systems," in IEEE Journal of Radio Frequency Identification, vol. 7, pp. 118-133, 2023, doi: 10.1109/JRFID.2023.3276310.
  6. S. Capdevila, L. Jofre, J. Romeu, and J. C. Bolomey, “Passive RFID based sensing,” in Proc. IEEE Int. Conf. RFID-Technol. Appl., Sep. 2011, pp. 507–512.
  7. D. Masi et al., "Radio-pill: RFID miniaturized and battery-free humidity probe for pharmaceutical moisture analysis," 2022 IEEE 12th International Conference on RFID Technology and Applications (RFID-TA), Cagliari, Italy, 2022, pp. 153-156, doi: 10.1109/RFID-TA54958.2022.9924046.
  8. S. Rima, A. Georgiadis, A. Collado, R. Goncalves and N. Carvalho, "Passive UHF RFID enabled temperature sensor tag on cork substrate," 2014 IEEE RFID Technology and Applications Conference (RFID-TA), Tampere, Finland, 2014, pp. 82-85, doi: 10.1109/RFID-TA.2014.6934205.
  9. V. Mulloni and M. Donelli, “Chipless RFID Sensors for the Internet of Things: Challenges and Opportunities,” Sensors, vol. 20, no. 7, p. 2135, Apr. 2020, doi: 10.3390/s20072135.
  10. E. Nilsson, B. Nilsson, L. Bengtsson, B. Svensson, P. -A. Wiberg and U. Bilstrup, "A low power-long range active RFID-system consisting of active RFID backscatter transponders," 2010 IEEE International Conference on RFID-Technology and Applications, Guangzhou, China, 2010, pp. 26-30, doi: 10.1109/RFID-TA.2010.5529854.
  11. J.~P.~Curty, N.~Joehl, C.~Dehollain, and M.~J.~Declercq, ”Remotely powered addressable UHF RFID integrated system,” IEEE Journal Solid-State Circuits, vol. 40, no. 11, pp. 2193--2201, Nov. 2005.
  12. F.~Fuschini, C.~Piersanti, F.~Paoloazzi, and G.~Falciasecca, “On the efficiency of load modulation in RFID systems operating in real enviroment,” IEEE Antennas and Propagat. Letters, vol. 7, pp. 243--246, 2008.
  13. S. Sharma, M. R. Tripathy and A. K. Sharma, "FSS supported longer read range passive UHF RFID reader antenna," 2021 IEEE International Conference on RFID Technology and Applications (RFID-TA), Delhi, India, 2021, pp. 207-210, doi: 10.1109/RFID-TA53372.2021.9617417.
  14. D.~M.~Dobkin, The RF in RFID: Passive UHF RFID in Practice, Elsevier, 2006.
  15. G.~Shaker, S.~Naeini, N.~Sangary, and M.~M.~Tentzeris, ``Inkjet printing of ultrawideband (UWB) antennas on paper based substrates, IEEE Antennas Wireless Propag. Letters, vol. 10, pp. 111--114, 2011.
  16. F.~Viani, G.~Oliveri, P.~Rocca, M.~Donelli, A.~Massa, and L.~Lizzi, ``WSN-based solutions for security and surveillance, European Microwave Week 2010, EuMW2010: Connecting the World, pp. 285--288, 2010.
  17. J. C. Bolomey and G. Gardiol, Engineering Applications of the Modulated Scattering Technique. Norwood, MA, USA: Artech House, 2001.
  18. R.~Bracht, E. K.~Miller, and T.~Kuckertz, ”Using an impedance-modulated reflector for passive communication IEEE Antennas and Propagation International Symposium, 13--18 July 1997, pp. 1070--1073, 1997.
  19. R.~Bracht, E. K.~Miller, and T.~Kuckertz, ”An impedance modulated reflector system,” IEEE Potentials, vol. 18, no. 4, pp. 29--33, Nov. 1999.
  20. R.~Harrington, ``Electromagnetic scattering by antennas, IEEE Trans. Antennas Propag., no. 1, vol. 5, pp. 595--596, Sep. 1963.
  21. M.~A.~Abou-Khousa and R.~Zoughi, ``Multiple loaded scatterer method for E-field mapping applications, IEEE Trans. Antennas Propag., vol. 58, pp. 900--907, 2010.
  22. H.~M.~Tehran, J.~Laurin, and R.~Kashyap, ``Optically modulated probe for precision near-field measurements, IEEE Trans. Instrumentation Measurement, vol. 59, no. 10, pp. 2755--2762, Oct. 2010.
  23. S. Caorsi, M. Donelli, and M. Pastorino, “A passive antenna system for data acquisition in scattering applications,” Antennas Wireless. Propag. Lett., vol. 1, pp. 203–206, 2002, doi: 10.1109/LAWP.2002.807958.
  24. M.~Ostradahimi, P.~Mojabi, S.~Noghanian, L.~Shafai, S.~Pistorius, and J.~Lovetri, ``A novel tomography system based on the scattering probe technique, IEEE Trans. Instrumentation Measurement, vol. 62, no. 2, pp. 379--390, Feb. 2012.
  25. J.~C. Bolomey, S.~Capdevila, L.~Jofre, and S.~Tedjini, ``Sensitivity analysis for wireless dielectric reflectometry with modulated scatterers Proc. 15th Int. Symp. Antenna Technol. Appl. Electromagn. Can. Radio Sci. Meeting ANTEM/URSI, pp. 1--4, 2011.
  26. W. Liang, G. Hygate, J. F. Nye, D. G. Gentle, and R. J. Cook, “A probe for making near-field measurements with minimal disturbance: The optically modulated scatterer,” IEEE Trans. Antennas Propag., vol. 1, no. 5, pp. 772–780, May 1997.
  27. M. Donelli and D. Franceschini, “Experiments With a Modulated Scattering System for Through-Wall Identification,” Antennas Wirel. Propag. Lett., vol. 9, pp. 20–23, 2010, doi: 10.1109/LAWP.2010.2041026.
  28. M. Donelli, “Design of long‐range, powerless RFID sensor at 10 GHz,” Electron. lett., vol. 49, no. 20, pp. 1277–1278, Sep. 2013, doi: 10.1049/el.2013.2303.
  29. M. Donelli and F. Viani, “Remote Inspection of the Structural Integrity of Engineering Structures and Materials With Passive MST Probes,” IEEE Trans. Geosci. Remote Sensing, vol. 55, no. 12, pp. 6756–6766, Dec. 2017, doi: 10.1109/TGRS.2017.2734042.
  30. M. Manekiya and M. Donelli, “An Air Quality Monitoring System with Enhanced Coverage Capabilities by Using the Modulated Scattering Technique (MST),” in 2019 PhotonIcs & Electromagnetics Research Symposium - Spring (PIERS-Spring), Rome, Italy: IEEE, Jun. 2019, pp. 2235–2240. doi: 10.1109/PIERS-Spring46901.2019.9017440.
  31. M. Manekiya, M. Donelli, V. Mulloni and G. Marchi, "Integration of Modulated Scattering Technique (MST) tags with IoT devices," 2022 Microwave Mediterranean Symposium (MMS), Pizzo Calabro, Italy, 2022, pp. 1-5, doi: 10.1109/MMS55062.2022.9825565.
  32. M. Manekiya, M. Donelli, A. Kumar, and S. Menon, “A Novel Detection Technique for a Chipless RFID System Using Quantile Regression,” Electronics, vol. 7, no. 12, p. 409, Dec. 2018, doi: 10.3390/electronics7120409.
  33. Aiswarya S, Sreedevi K. Menon, Massimo Donelli, "Development of Enhanced Range, High Q, Passive, Chipless RFID Tags for Continuous Monitoring and Sensing Applications", Electronics, vol.11, no.1, pp.127, 2021.
  34. M. Donelli, “Guidelines for the Design and Optimization of Wireless Sensors Based on the Modulated Scattering Technique,” IEEE Trans. Instrum. Meas., vol. 63, no. 7, pp. 1824–1833, Jul. 2014, doi: 10.1109/TIM.2013.2297813.
  35. M. Donelli, “A broadband modulated scattering technique (MST) probe based on a self complementary antenna,” in 2017 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), Verona, Italy: IEEE, Sep. 2017, pp. 25–28. doi: 10.1109/APWC.2017.8062231.
  36. M. Donelli and F. Viani, "Graphene-Based Antenna for the Design of Modulated Scattering Technique (MST) Wireless Sensors," in IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 1561-1564, 2016, doi: 10.1109/LAWP.2016.2517041.
  37. M. Donelli, “A 24GHz environmental sensor based on the modulated scattering technique (MST),” in 2014 IEEE Conference on Antenna Measurements & Applications (CAMA), Antibes Juan-les-Pins, France: IEEE, Nov. 2014, pp. 1–3. doi: 10.1109/CAMA.2014.7003306.
  38. R. R. Mansour, “RF MEMS FOR SPACE APPLICATIONS,” in 2005 International Conference on MEMS, NANO and Smart Systems, Banff, AB, Canada: IEEE, 2005, pp. 191–192. doi: 10.1109/ICMENS.2005.104.
  39. J. Iannacci, "RF-MEMS technology: An enabling solution in the transition from 4G-LTE to 5G mobile applications," 2017 IEEE SENSORS, Glasgow, UK, 2017, pp. 1-3, doi: 10.1109/ICSENS.2017.8234190.
  40. M. Donelli and J. Iannacci, "Exploitation of RF-MEMS Switches for the Design of Broadband Modulated Scattering Technique Wireless Sensors," in IEEE Antennas and Wireless Propagation Letters, vol. 18, no. 1, pp. 44-48, Jan. 2019, doi: 10.1109/LAWP.2018.2880420.
  41. M. Donelli, M. Manekiya and J. Iannacci, "Broadband MST sensor probes based on a SP3T MEMs switch," 2019 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, Atlanta, GA, USA, 2019, pp. 649-650, doi: 10.1109/APUSNCURSINRSM.2019.8888839.
  42. S. Capdevila, L. Jofre, J. Romeu, and J. C. Bolomey, “RFID multiprobe impedance based sensors,” IEEE Trans. Instrum. Meas., vol. 59, no. 12, pp. 3093–3101, Dec. 2010.
  43. S. Capdevila, L. Jofre, J.~Romeu, and J.~C.~Bolomey, ``Electromagnetic modeling of RFID-modulated scattering mechanism, Proc. IEEE, vol. 98, no. 9, pp. 1555-1569, Sep. 2010.
  44. J. C.~Bolomey,H. M. Tehran, and J.~J.~Laurin, ``Optimization of optically and electrically modulated scattering probes for field measurements, IEEE Trans. Instrumentation Measurement, vol. 63, no. 1, pp. 154-165, Jan. 2014.
  45. S. Capdevila, J. C. Bolomey, J.~Romeu, and L.~Jofre, Antenna input impedance measurement using multi-load MST, International Workshop on Antenna Technology (IWAT), pp. 353-355, 2013. Maestripieri, D. (2012). Games Primates Play. An Undercover Investigation of the Evolution and Economics of Human Relationships. New York: Basic Books.
  46. Bentley, C. G., Galliher, R. V., & Ferguson, T. J. (2007). Associations among aspects of interpersonal power and relationship functioning in adolescent romantic couples. Sex Roles, 57(7-8), 483-495.
  47. Dunbar, N. E., & Burgoon, J. K. (2005). Perceptions of power and interactional dominance in interpersonal relationships. Journal of Social and Personal Relationships, 22(2), 207-233.