Ulva lactuca a natural occurring source of minerals to promote bone health and sustain athlete performance

From Top Italian Scientists Journal
Published
September 5, 2024
Title
Ulva lactuca a natural occurring source of minerals to promote bone health and sustain athlete performance
Authors
Giovanni Ficarra, Rita Lauro, Laura De Maria, Natasha Irrera, Nicola Cicero, Alessandra Bitto.
DOI
10.62684/TPMV8987
Keywords
Ulva lactuca; bone health; BMP-6, RUNX-2, Osteocalcin.
Downloads
Download PDF
Download PDF

Giovanni Ficarra(1), Rita Lauro(2), Laura De Maria(1), Natasha Irrera(2), Nicola Cicero(1), Alessandra Bitto(2)

(1) Department of Biomedical Sciences, Dental Sciences, and Morpho-Functional Imaging, University Hospital, Messina, Italy.

(2) Department of Clinical and Experimental Medicine, University Hospital, Messina, Italy.

Correspondence to: Alessandra Bitto, MD, PhD, Department of Clinical and Experimental Medicine, University of Messina, Torre Biologica 5th floor, “AOU” Policlinico G. Martino. Via C. Valeria, Gazzi, 98125 Messina, Italy, E-mail: abitto@unime.it

Abstract

The purpose of this study was to identify if the components extracted from Ulva lactuca might have some positive effect in maintaining and improve osteoblast function. The fresh Ulva was lyophilized, and the extract was characterized before testing. The osteoblasts were cultured in standard conditions and the lyophilized extract was tested at 1mg/ml for up to 48 hrs. s markers of osteoblast function and proliferation BMP-6, RUNX-2 and Osteocalcin were analyzed on the mRNA extracted from the osteoblast. The results showed a significant increase, especially after 48 hrs in the production of osteocalcin mRNA which suggest a role for this extract in maintaining bone health. Although preliminary these data indicate that the extract from Ulva can be used as supplements for human use especially in those conditions where minerals and antioxidants are more needed.

Declarations

Conflict of Interest

AB and NI are co-funders of SunNutraPharma srl a spin-off company of the University of Messina

Funding

This research has been performed using fundings from SunNutraPharma srl

Author Contributions

GF and AB conceived and wrote the paper RL and LDM produced data NI and NC revised and analyzed data

References

  1. Dominguez, H., & Loret, E.P. (2019) Ulva lactuca, A Source of Troubles and Potential Riches. Marine Drugs, 14, 17(6):357. doi: 10.3390/md17060357.
  2. Crescenti, N., Baviera, C., & Zaccone, D. (2010). Asterocheres Faroensis, a new species (Copepoda, Siphonostomatoida, Asterocheridae) associated with Hymeniacidon Perlevis (Montagu, 1812) (Porifera) from Lake Faro, Mediterranean Sea. Crustaceana, 83 (3), 299–311. http://www.jstor.org/stable/20696270
  3. Coppari, M., Gori, A., Viladrich, N., Saponari, L., Canepa, A., Grinyó, J., Olariaga, A., & Rossi, S. (2016). The role of Mediterranean sponges in benthic–pelagic coupling processes: Aplysina aerophoba and Axinella polypoides case studies, Journal of Experimental Marine Biology and Ecology, 477, 57–68. https://doi.org/10.1016/j.jembe.2016.01.004
  4. Liu, D., Keesing, J. K., He, P., Wang, Z., Shi, Y., & Wang, Y. (2010). The world's largest macroalgal bloom in the Yellow Sea, China: Formation and implications. Estuarine, Coastal and Shelf Science, 86(3), 411-418.
  5. Lordan, S., Ross, R. P., & Stanton, C. (2011). Marine bioactives as functional food ingredients: potential to reduce the incidence of chronic diseases. Marine drugs, 9(6), 1056–1100. https://doi.org/10.3390/md9061056
  6. Cesário, M. T., da Fonseca, M. M. R., Marques, M. M., & de Almeida, M. C. M. D. (2018). Marine algal carbohydrates as carbon sources for the production of biochemicals and biomaterials. Biotechnology advances, 36(3), 798–817. https://doi.org/10.1016/j.biotechadv.2018.02.006
  7. Ortiz, J., Romero, N., Robert, P., Araya, J., Lopez-Hernandez, J., Bozzo, C., Navarrete, E., Osorio, A., & Rios, A. (2006). Dietary fiber, amino acid, fatty acid and tocopherol contents of the edible seaweeds Ulva lactuca and Durvillaea antarctica. Food Chemistry, 99(1), 98-104. https://doi.org/10.1016/j.foodchem.2005.07.027
  8. Alves, A., Sousa, R. A., & Reis, R. L. (2013). Processing of degradable ulvan 3D porous structures for biomedical applications. Journal of biomedical materials research. Part A, 101(4), 998–1006. https://doi.org/10.1002/jbm.a.34403
  9. Massironi, A., Morelli, A., Grassi, L., Puppi, D., Braccini, S., Maisetta, G., Esin, S., Batoni, G., Della Pina, C., & Chiellini, F. (2019). Ulvan as novel reducing and stabilizing agent from renewable algal biomass: Application to green synthesis of silver nanoparticles. Carbohydrate polymers, 203, 310–321. https://doi.org/10.1016/j.carbpol.2018.09.066
  10. Kosanić, M., Ranković, B., & Stanojković, T. (2015). Biological activities of two macroalgae from Adriatic coast of Montenegro. Saudi journal of biological sciences, 22(4), 390–397. https://doi.org/10.1016/j.sjbs.2014.11.004
  11. Boisvert, C., Beaulieu, L., Bonnet, C., & Pelletier, É. (2015). Assessment of the antioxidant and antibacterial activities of three species of edible seaweeds, Journal of Food Biochemistry, 39, 377–387. https://doi.org/10.1111/jfbc.12146
  12. Sathivel, A., Raghavendran, H. R., Srinivasan, P., & Devaki, T. (2008). Anti-peroxidative and anti-hyperlipidemic nature of Ulva lactuca crude polysaccharide on D-galactosamine induced hepatitis in rats. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association, 46(10), 3262–3267. https://doi.org/10.1016/j.fct.2008.07.016
  13. Hussein, U. K., Mahmoud, H. M., Farrag, A. G., & Bishayee, A. (2015). Chemoprevention of Diethylnitrosamine-Initiated and Phenobarbital-Promoted Hepatocarcinogenesis in Rats by Sulfated Polysaccharides and Aqueous Extract of Ulva lactuca. Integrative cancer therapies, 14(6), 525–545. https://doi.org/10.1177/1534735415590157
  14. Liu, X. Y., Liu, D., Lin, G. P., Wu, Y. J., Gao, L. Y., Ai, C., Huang, Y. F., Wang, M. F., El-Seedi, H. R., Chen, X. H., & Zhao, C. (2019). Anti-ageing and antioxidant effects of sulfate oligosaccharides from green algae Ulva lactuca and Enteromorpha prolifera in SAMP8 mice. International journal of biological macromolecules, 139, 342–351. https://doi.org/10.1016/j.ijbiomac.2019.07.195
  15. Sánchez-Peña, M. J., Márquez-Sandoval, F., Ramírez-Anguiano, A. C., Velasco-Ramírez, S. F., Macedo-Ojeda, G., & González-Ortiz, L. J. (2017). Calculating the metabolizable energy of macronutrients: a critical review of Atwater's results. Nutrition reviews, 75(1), 37–48. https://doi.org/10.1093/nutrit/nuw044
  16. AFNOR NF 03-713. Céréales et Produits Céréaliers; Association Française de Normalisation: Paris, France, 1984.
  17. Prosky, L., Asp, N. G., Schweizer, T. F., DeVries, J. W., & Furda, I. (1988). Determination of insoluble, soluble, and total dietary fiber in foods and food products: interlaboratory study. Journal - Association of Official Analytical Chemists, 71(5), 1017–1023.
  18. Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of dairy science, 74(10), 3583–3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  19. Holdt, S. L., & Kraan, S. (2011). Bioactive compounds in seaweed: Functional food applications and legislation. Journal of Applied Phycology, 23(3), 543-597. https://doi.org/10.1007/s10811-010-9632-5
  20. Pappou, S., Dardavila, M.M., Savvidou, M.G., Louli, V., Magoulas, K., & Voutsas, E. (2022). Extraction of Bioactive Compounds from Ulva lactuca. Applied Sciences, 12(4), 2117. https://doi.org/10.3390/app12042117