Overview of the complex but fruitful relationship between molecular chemistry and quantum mechanics, in celebration of the Year of Quantum Sciences and Technologies.

From Top Italian Scientists Journal
Published
September 1, 2025
Title
Overview of the complex but fruitful relationship between molecular chemistry and quantum mechanics, in celebration of the Year of Quantum Sciences and Technologies
Authors
Giovanni Villani, Maria Vittoria Cubellis
DOI
10.62684/JDPO8893
Downloads
Download PDF
Download PDF

Giovanni Villani (a), Maria Vittoria Cubellis (b)

(a) Istituto di Chimica dei Composti Organometallici del CNR - Sede di Pisa, Via G. Moruzzi,1 - 56124 Pisa, Italia

(b) Dipartimento di Biologia, Università Federico II, Napoli, Italia. Rappresentanza Permanente d'Italia presso l’UNESCO, Parigi.

Correspondence to: Maria Vittoria Cubellis, email: cubellis@unina.it


Abstract

The United Nations General Assembly has officially designated 2025 as the International Year of Quantum Science and Technology (IYQ). This global initiative, supported by UNESCO and co-sponsored by several countries, marks the centenary of quantum sciences, which encompass quantum mechanics, quantum chemistry, and related fields. These disciplines serve as the foundation for fundamental research across the natural sciences. Quantum mechanics provides the theoretical framework for understanding matter and energy at the microscopic scale. While public celebrations of the International Year of Quantum Science and Technology often showcase quantum technologies to engage a broader audience, it is crucial to remember that the emergence of quantum theory primarily represented a ground-breaking shift in the basic sciences.

This article explores the complex relationship between quantum mechanics and concepts of traditional chemistry, particularly concerning the microscopic world of atoms and molecules. It highlights how quantum mechanics, a holistic and nonlocal theory, features concepts such as entanglement and the indistinguishability of components that challenge classical chemical notions of distinct interatomic interactions and well-defined molecular structures. While quantum mechanics excels at determining the overall stability and dynamics of the system, the article explains that quantum chemistry relies on the classical Born-Oppenheimer approximation to maintain the view of local interactions and identifiable atoms within a molecule. Then, the article discusses the historical development and limitations of transition state theory in explaining chemical reactions, highlighting chemistry’s specific focus on bond breaking and bond making as a fundamental explanatory principle.

Declarations

Conflict of Interest

The Authors declare that there is no conflict of interest.

References

  1. Heisenberg, W. (2025) "Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen." Zeitschrift für Physik, 879–93.
  2. Banchetti-Robino, M. P., Villani, G. (2023). From the Atom to Living Systems. A Chemical and Philosophical Journey into Modern and Contemporary Science. New York (USA): Oxford University Press, 55-59.
  3. Cao, H.-Q., Zuo, H.-J. (2023). Locally distinguishing nonlocal sets with entanglement resource, Physica A, 623, 128852.
  4. A. Einstein, A., Podolsky, B., Rosen, N. (1935). Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?, Phys. Rev, 47, 777-780.
  5. Aspect, A., Dalibard, J., Roger, G. (1982). Experimental test of bells inequalities using time-varying analyzers, Phys. Rev. Lett., 49, 1804-1807.
  6. Oppenheim, J., Wehner, S. (2010). The Uncertainty Principle Determines the Nonlocality of Quantum Mechanics, Science, 330, 1072-1074.
  7. Goldstein, S. (2024). Bohmian Mechanics, The Stanford Encyclopedia of Philosophy (Summer 2024 Edition), Edward N. Zalta & Uri Nodelman (eds.), https://plato.stanford.edu/archives/sum2024/entries/qm-bohm/.
  8. Rovelli, C. (1996). Relational quantum mechanics, Int J Theor Phys 35, 1637–1678.
  9. Capra, F. (1975). The Tao of Physics. An Exploration of the Parallels Between Modern Physics and Eastern Mysticism, Boston (USA): Shambhala Publications.
  10. Schrödinger, E. (1935).The Present Status of Quantum Mechanics, Die Naturwissenschaften, 23 (48), 1-26.
  11. Villani, G. (2001). La chiave del mondo. Dalla filosofia alla scienza: l’onnipotenza delle molecole, Napoli (IT): CUEN, 129-144.
  12. Villani, G. (2008). Complesso e organizzato. Sistemi strutturati in fisica, chimica, biologia ed oltre, Milano (IT): FrancoAngeli, 58-62.
  13. Hendry, R. F. (2010). Ontological reduction and molecular structure, Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 41(2), 183-191.
  14. Ghibaudi, E., Cerruti, L., Villani, G., (2020). Structure, shape, topology: entangled concepts in molecular chemistry, Foundations of Chemistry, 22, 279–307.
  15. Lombardi, O., Villani, G. (2024). About the Concept of Molecular Structure, Foundations of Science, https://doi.org/10.1007/s10699-024-09963-y.
  16. Bechtel, W., Richardson, R. C. (1993). Discovering complexity: Decomposition and localization as strategies in scientific research. Princeton University Press.
  17. Uhliar, M. (2024). Atomic partial charge model in chemistry: chemical accuracy of theoretical approaches for diatomic molecules, Acta Chimica Slovaca, 17(1), 1 -11, https://doi.org/10.2478/acs-2024-0001.
  18. Lang, L., Cezar, H. M., Adamowicz, L., Pedersen, T. B. (2024). Quantum Definition of Molecular Structure, J. Am. Chem. Soc, 146, 1760−1764.
  19. Villani, G., (1993). Sostanze e reazioni chimiche: concetti di chimica teorica di interesse generale, Epistemologia, XVI, 191-212.
  20. Machamer, P., Darden, L., Craver, C. (2000). Thinking about mechanisms. Philosophy of Science, 67, 1–25.
  21. Bechtel, W. (2011). Mechanism and Biological Explanation. Philosophy of Science 78, 533-557.
  22. Hendry, R. F. (2023). Mechanisms in Chemistry, in New Mechanism. Explanation, Emergence and Reduction, Cordovil, J. L., Santos, G., Vecchi, D. (Eds), History, Philosophy and Theory of the Life Sciences, 35, 139-160.
  23. Marcelin, R. (1915). Contribution a l'étude de la cinétique physico-chimique. Annales de Physique, 9(3),120-231.
  24. Eyring, H. (1935). The activated complex in chemical reactions, Journal of Chemical Physics, 3,107-115.
  25. Evans, M. G., Polanyi, M. (1936). Further Considerations on the Thermo-Dynamics of Chemical Equilibria and Reaction Rates, Trans. Faraday Soc., 32, 1333-1360.
  26. Evans, M. G,; Polanyi, M. (1938). Inertia and Driving Force of Chemical Reactions, Trans. Faraday Soc., 34, 11-24.
  27. Eyring H. (1977) Men, mines, and molecules, Annual Review of Physical Chemistry, 28, 1-15.
  28. Gupta, M. C. (2007). Statistical thermodynamics, New Delhi (India): New Age International.
  29. Christov, S. G. (1980). Historical Introduction, in Collision Theory and Statistical Theory of Chemical Reactions, Lecture Notes in Chemistry, 18, Berlin, Heidelberg (DE): Springer.
  30. Wigner, E. (1938). The transition state method, Trans. Faraday Soc., 34, 29-41.
  31. Hirshfelder, J. O., Wigner, E. (1939). Some Quantum‐Mechanical Considerations in the Theory of Reactions Involving an Activation Energy, J. Chem. Phys. 7, 616–628.
  32. van Santen, R. A, Niemantsverdriet, H. (J.) W. (2013). Chemical Kinetics and Catalysis. Fundamental and Applied Catalysis. New York (USA): Springer Science & Business Media.
  33. Villani, G. (2020). A Time-Dependent Quantum Approach to Allostery and a Comparison With Light-Harvesting in Photosynthetic Phenomenon, Frontiers in Molecular Biosciences, 7, https://doi.org/10.3389/FMOLB.2020.00156