Enhancing agricultural resilience through plant-microbe interactions: a key challenge for sustainable farming
Published |
June 28, 2025 |
Title |
Enhancing agricultural resilience through plant-microbe interactions: a key challenge for sustainable farming |
Authors |
Federica Tenaglia, Fabiano Sillo, Walter Chitarra, Raffaella Balestrini |
DOI |
10.62684/WYXR4973 |
Keywords |
Arbuscular mycorrhizal fungi, Plant resilience, Soil microorganisms, Dissemination activities |
Downloads |
![]() |
Federica Tenaglia(a), Fabiano Sillo(b), Walter Chitarra(c), Raffaella Balestrini(d)
(a) National research Council, Department of Biology, Agriculture and Food Sciences
(b) National Research Council, Institute for Sustainable Plant Protection
(c) Council for Agricultural Research and Economics, Research Centre for Viticulture and Enology
(d) National Research Council, Institute of Biosciences and Bioresources
Correspondence to: Raffaella Balestrini, raffaellamaria.balestrini@cnr.it
Abstract
Modern agriculture faces the dual challenge of increasing food production while reducing environmental impact, especially in the context of climate change. One promising solution lies in harnessing the natural relationships between plants and beneficial microbes. These interactions can help crops use resources more efficiently, become more resistant to stress, and reduce the need for chemical treatments. This review focuses on grapevine and rice, two globally important crops, as examples to highlight how root-associated microbes can support more sustainable farming. Thanks to recent advances in DNA sequencing and microbial research, scientists are now able to design specific microbial mixtures, known as synthetic communities (SynComs), tailored to improve plant health. However, key challenges remain, such as selecting the right microbes, ensuring their stability, and applying them effectively in the field. At the same time, breeding crop varieties that are more responsive to helpful microbes is becoming increasingly important. The Micro4Life project, funded by AGER, explores these topics by studying how crops and their microbiomes interact under different environmental conditions. It also promotes field-based research and continuous dialogue with farmers to ensure that scientific advances address real-world needs and constraints. This approach not only opens new opportunities to make agriculture more resilient and environmentally friendly but also delivers economic benefits—such as improved productivity and efficiency—and strengthens the resilience of farming communities by empowering local stakeholders and integrating traditional knowledge.
Declarations
Acknowledgments
The authors are grateful to all the Micro4Life partners and colleagues.
Conflict of Interest
The Authors declare that there is no conflict of interest.
Funding
The authors have no funding sources to report.
Author Contributions
FT: Conceptualization, Writing - Review & Editing; FS, Writing - Review & Editing; WC, Writing - Review & Editing; RB: Conceptualization, Investigation, Writing – Review & Editing.
References
- Nerva, L., Sandrini, M., Moffa, L., Velasco, R., Balestrini, R., & Chitarra, W. (2022). Breeding toward improved ecological plant-microbiome interactions. Trends in Plant Science, 28, 3–6. https://doi.org/10.1016/j.tplants.2022.06.004
- Balestrini, R., Sillo, F., Boussageon, R., Wipf, D., & Courty, P. E. (2024). The hidden side of interaction: Microbes and roots get together to improve plant resilience. Journal of Plant Interactions, 19, 2323991. https://doi.org/10.1080/17429145.2024.2323991
- Borghi, M., Pacifico, D., Crucitti, D., Squartini, A., Berger, M. M. J., Gamboni, M., Carimi, F., Lehad, A., Costa, A., Gallusci, P., Fernie, A. R., & Zottini, M. (2024). Smart selection of soil microbes for resilient and sustainable viticulture. Plant Journal, 118, 1258–1267. https://doi.org/10.1111/tpj.16674
- González Guzmán, M., Cellini, F., Fotopoulos, V., Balestrini, R., & Arbona, V. (2022). New approaches to improve crop tolerance to biotic and abiotic stresses. Physiologia Plantarum, 174, e13547. https://doi.org/10.1111/ppl.13547
- Sena, L., Mica, E., Valè, G., Vaccino, P., & Pecchioni, N. (2024). Exploring the potential of endophyte–plant interactions for improving crop sustainable yields in a changing climate. Frontiers in Plant Science, 15, 1349401. https://doi.org/10.3389/fpls.2024.1349401
- Fierer, N. (2017). Embracing the unknown: Disentangling the complexities of the soil microbiome. Nature Reviews Microbiology, 15, 579–590. https://doi.org/10.1038/nrmicro.2017.87
- Banerjee, S., & Van Der Heijden, M. G. (2023). Soil microbiomes and one health. Nature Reviews Microbiology, 21(1), 6–20. https://doi.org/10.1038/s41579-022-00797-y
- Sandrini, M., Nerva, L., Sillo, F., Balestrini, R., Chitarra, W., & Zampieri, E. (2022). Abiotic stress and belowground microbiome: The potential of omics approaches. International Journal of Molecular Sciences, 23(3), 1091. https://doi.org/10.3390/ijms23031091
- De Souza, R. S. C., Armanhi, J. S. L., & Arruda, P. (2020). From microbiome to traits: Designing synthetic microbial communities for improved crop resiliency. Frontiers in Plant Science, 11, 1179. https://doi.org/10.3389/fpls.2020.01179
- Cernava, T. (2024). Coming of age for microbiome gene breeding in plants. Nature Communications, 15, 6623. https://doi.org/10.1038/s41467-024-36994-3
- Peñuelas, J., Coello, F., & Sardans, J. (2023). A better use of fertilizers is needed for global food security and environmental sustainability. Agriculture & Food Security, 12, 1–9. https://doi.org/10.1186/s40066-023-00389-0
- Griffin, C., Oz, M. T., & Demirer, G. S. (2024). Engineering plant–microbe communication for plant nutrient use efficiency. Current Opinion in Biotechnology, 88, 103150. https://doi.org/10.1016/j.copbio.2024.103150
- Xu, X., Dinesen, C., Pioppi, A., Kovács, Á. T., & Lozano-Andrade, C. N. (2025). Composing a microbial symphony: Synthetic communities for promoting plant growth. Trends in Microbiology. https://doi.org/10.1016/j.tim.2025.01.006
- Caradonia, F., Battaglia, V., Righi, L., Pascali, G., & La Torre, A. (2019). Plant biostimulant regulatory framework: Prospects in Europe and current situation at international level. Journal of Plant Growth Regulation, 38, 438–448. https://doi.org/10.1007/s00344-018-9853-4
- Nunes, P. S. O., Lacerda-Junior, G. V., Mascarin, G. M., Guimarães, R. A., Medeiros, F. H. V., Arthurs, S., & Bettiol, W. (2024). Microbial consortia of biological products: Do they have a future? Biological Control, 188, 105439. https://doi.org/10.1016/j.biocontrol.2024.105439
- Martins, S. J., Pasche, J., Silva, H. A. O., Selten, G., Savastano, N., Abreu, L. M., … & Cernava, T. (2023). The use of synthetic microbial communities to improve plant health. Phytopathology, 113, 1369–1379. https://doi.org/10.1094/PHYTO-01-23-0016-IA
- Delgado-Baquerizo, M., Singh, B. K., Liu, Y. R., Sáez-Sandino, T., Coleine, C., Muñoz-Rojas, M., et al. (2025). Integrating ecological and evolutionary frameworks for SynCom success. New Phytologist, 246, 1922–1933. https://doi.org/10.1111/nph.70112
- Sasse, J., Martinoia, E., & Northen, T. (2018). Feed your friends: Do plant exudates shape the root microbiome? Trends in Plant Science, 23(1), 25–41. https://doi.org/10.1016/j.tplants.2017.09.003
- Morella, N. M., Weng, F. C. H., Joubert, P. M., Metcalf, C. J. E., Lindow, S., & Koskella, B. (2020). Successive passaging of a plant-associated microbiome reveals robust habitat and host genotype-dependent selection. Proceedings of the National Academy of Sciences, 117, 1148–1159. https://doi.org/10.1073/pnas.1908600116
- Dilla-Ermita, C. J., Lewis, R. W., Sullivan, T. S., & Hulbert, S. H. (2021). Wheat genotype-specific recruitment of rhizosphere bacterial microbiota under controlled environments. Frontiers in Plant Science, 12, 718264. https://doi.org/10.3389/fpls.2021.718264
- Xiong, J., Lu, J., Li, X., Qiu, Q., Chen, J., & Yan, C. (2021). Effect of rice (Oryza sativa L.) genotype on yield: evidence from recruiting spatially consistent rhizosphere microbiome. Soil Biology and Biochemistry, 161, 108395. https://doi.org/10.1016/j.soilbio.2021.108395
- Clouse, K. M., & Wagner, M. R. (2021). Plant genetics as a tool for manipulating crop microbiomes: Opportunities and challenges. Frontiers in Bioengineering and Biotechnology, 9, 567548. https://doi.org/10.3389/fbioe.2021.567548
- Lynch, J. P. (2013). Steep, cheap and deep: An ideotype to optimize water and N acquisition by maize root systems. Annals of Botany, 112, 347–357. https://doi.org/10.1093/aob/mcs293
- Dwivedi, S. L., Vetukuri, R. R., Kelbessa, B. G., Gepts, P., Heslop-Harrison, P., Araujo, A. S. F., et al. (2025). Exploitation of rhizosphere microbiome biodiversity in plant breeding. Trends in Plant Science. https://doi.org/10.1016/j.tplants.2025.04.004
- Galindo-Castañeda, T., Lynch, J. P., Six, J., & Hartmann, M. (2022). Improving soil resource uptake by plants through capitalizing on synergies between root architecture and anatomy and root-associated microorganisms. Frontiers in Plant Science, 13, 827369. https://doi.org/10.3389/fpls.2022.827369
- Raza, S., Pandey, B. K., Hawkesford, M. J., Griffiths, S., Bennett, M. J., & Mooney, S. J. (2025). Future crop breeding needs to consider future soils. Nature Plants. https://doi.org/10.1038/s41477-025-01977-z
- Pinto, C., Pinho, D., Sousa, S., Pinheiro, M., Egas, C., & Gomes, A. C. (2014). Unravelling the diversity of grapevine microbiome. PloS One, 9, e85622. https://doi.org/10.1371/journal.pone.0085622
- Marasco, R., Alturkey, H., Fusi, M., Brandi, M., Ghiglieno, I., Valenti, L., & Daffonchio, D. (2022). Rootstock–scion combination contributes to shape diversity and composition of microbial communities associated with grapevine root system. Environmental Microbiology, 24, 3791–3808. https://doi.org/10.1111/1462-2920.16002
- Balestrini, R., Magurno, F., Walker, C., Lumini, E., & Bianciotto, V. (2010). Cohorts of arbuscular mycorrhizal fungi (AMF) in Vitis vinifera, a typical Mediterranean fruit crop. Environmental microbiology reports, 2, 594-604. https://doi.org/10.1111/j.1758-2229.2010.00160.x
- Bettenfeld, P., Cadena i Canals, J., Jacquens, L., Fernandez, O., Fontaine, F., van Schaik, E., Courty, P. E., & Trouvelot, S. (2022). The microbiota of the grapevine holobiont: A key component of plant health. Journal of Advanced Research, 40, 1 – 15. https://doi.org/10.1016/j.jare.2021.12.008
- Hu, B., Wang, W., Ou, S., Tang, J., Li, H., Che, R., et al. (2015). Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nature Genetics, 47, 834–838. https://doi.org/10.1038/ng.3337
- Zhang, J., Liu, Y. X., Zhang, N., Hu, B., Jin, T., Xu, H., et al. (2019). NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nature Biotechnology, 37, 676–684. https://doi.org/10.1038/s41587-019-0104-4
- Kim, H., Jung, J., Singh, N., Greenberg, A., Doyle, J. J., Tyagi, W., et al. (2016). Population dynamics among six major groups of the Oryza rufipogon species complex, wild relative of cultivated Asian rice. Rice, 9, 1–15. https://doi.org/10.1186/s12284-016-0119-0
- Pérez-Jaramillo, J. E., Carrión, V. J., de Hollander, M., & Raaijmakers, J. M. (2018). The wild side of plant microbiomes. Microbiome, 6, 143. https://doi.org/10.1186/s40168-018-0519-z
- Oyserman, B. O., Flores, S. S., Griffioen, T., Pan, X., van der Wijk, E., Pronk, L., et al. (2022). Disentangling the genetic basis of rhizosphere microbiome assembly in tomato. Nature Communications, 13, 3228. https://doi.org/10.1038/s41467-022-30849-9
- Escudero-Martinez, C., Coulter, M., Alegria Terrazas, R., Foito, A., Kapadia, R., Pietrangelo, L., et al. (2022). Identifying plant genes shaping microbiota composition in the barley rhizosphere. Nature Communications, 13, 3443. https://doi.org/10.1038/s41467-022-31022-y
- Guo, S., Xia, L., Xia, D., Li, M., Xu, W., & Liu, L. (2024). Enhancing plant resilience: Arbuscular mycorrhizal fungi’s role in alleviating drought stress in vegetation concrete. Frontiers in Plant Science, 15, 1401050. https://doi.org/10.3389/fpls.2024.1401050
- Kåresdotter, E., Destouni, G., Lammers, R. B., Keskinen, M., Pan, H., & Kalantari, Z. (2025). Water conflicts under climate change: Research gaps and priorities. Ambio, 54, 618–631. https://doi.org/10.1007/s13280-024-02111-7