The 2022 classifications of B-cell lymphomas and plasma cell disorders

From Top Italian Scientists Journal
Revision as of 13:54, 25 March 2024 by Admin (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Published
March 5, 2024
Title
The 2022 classifications of B-cell lymphomas and plasma cell disorders
Authors
Pier Paolo Piccaluga, Shaimaa Khattab
DOI
10.62684/PYHQ4306
Keywords
Classification; B-cell; Lymphoma; Hodgkin; non-Hodgkin; Leukemia; Multiple Myeloma; plasma cell; WHO; ICC
Downloads
Download PDF
Download PDF

Pier Paolo Piccaluga(a,b), Shaimaa Khattab(a,b)

(a) Biobank of Research, IRCCS Azienda Ospedaliera-Universitaria di Bologna Policlinico di S. Orsola, Bologna, Italy.

(b) Department of Medical and Surgical Sciences, Bologna University School of Medicine, Bologna, Italy.

Correspondence to: Pier Paolo Piccaluga, Biobank of Research, IRCCS Azienda Ospedaliera-Universitaria di Bologna, Policlinico di S. Orsola; Institute of Hematology and Medical Oncology “L&A Seràgnoli” - Department of Medical and Surgical Sciences, University of Bologna, Italy; Via Massarenti, 9 – 40138 Bologna, Italy - Phone +39 0512141468 - Fax +39 0512144037 – e-mail: pierpaolo.piccaluga@unibo.it

Abstract

Tumors derived from B-lymphocytes at their various stage of maturation and differentiation (human B-cell lymphomas and leukemias) are the commonest hematological malignancies. Previous editions of the World Health Organization (WHO) classification of Hematopoietic and lymphoid neoplasms, edited in 2001, 2008, and 2017, intended to standardize the diagnosis of hemopoietic neoplasms overall. Recent advances in lymphoma research, mostly based on genomic as well as molecular analyses, have dramatically expanded our knowledge of lymphoma biology, this leading to improved diagnostic criteria, upgrading of provisional entities, and identification of new tumor types. In 2022, two frameworks for classifying hematolymphoid neoplasms were proposed: the WHO-HAEM5 and the International Consensus Classification (ICC). Since a common nosography is essential for advancing health science and providing a foundation for precision medicine, it is critical to recognize possible differences and harmonize the diverse approaches. In this article, the Authors summarizes the key differences between the two most recent classifications by focusing on tumors derived from B-lymphocytes and plasma cells.

Declarations

Acknowledgments

Prof. Pier Paolo Piccaluga is currently affiliated to the Jomo Kenyatta University of Agriculture and Technology (Nairobi, Kenya), The University of Nairobi (Nairobi, Kenya), and the University of Botswana (Gaborone, Botswana).

Conflict of Interest

The Authors declare that there is no conflict of interest.

References

  1. Campo E, Jaffe ES, Cook JR, Quintanilla-Martinez L, Swerdlow SH, Anderson KC, et al. The international consensus classification of mature lymphoid neoplasms: a report from the clinical advisory committee. Blood, The Journal of the American Society of Hematology. 2022;140(11):1229-53. doi.org/10.1182/blood.2022015851
  2. Alaggio R, Amador C, Anagnostopoulos I, Attygalle AD, Araujo IBdO, Berti E, et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: lymphoid neoplasms. Leukemia. 2022;36(7):1720-48. doi.org/10.1038/s41375-022-01620-2
  3. Arber DA, Orazi A, Hasserjian RP, Borowitz MJ, Calvo KR, Kvasnicka H-M, et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data. Blood, The Journal of the American Society of Hematology. 2022;140(11):1200-28. doi.org/10.1182/blood.2022015850
  4. Khoury JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF, et al. The 5th edition of the World Health Organization classification of haematolymphoid tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia. 2022;36(7):1703-19. doi.org/10.1038/s41375-022-01613-1
  5. Lenz G, Staudt LM. Aggressive lymphomas. New England Journal of Medicine. 2010;362(15):1417-29. doi:10.1056/NEJMra0807082
  6. Piccaluga PP, Khattab SS. A Comparison of the Fifth World Health Organization and the International Consensus Classifications of Mature T-Cell Lymphomas. International Journal of Molecular Sciences. 2023;24(18):14170. doi.org/10.3390/ijms241814170
  7. Marti GE, Rawstron AC, Ghia P, Hillmen P, Houlston RS, Kay N,
  8. et al. Diagnostic criteria for monoclonal B‐cell lymphocytosis. British journal of haematology. 2005;130(3):325-32. doi.org/10.1111/j.1365-2141.2005.05550.x
  9. Rawstron AC, Shanafelt T, Lanasa MC, Landgren O, Hanson C, Orfao A, et al. Different biology and clinical outcome according to the absolute numbers of clonal B‐cells in monoclonal B‐cell lymphocytosis (MBL). Cytometry Part B: Clinical Cytometry. 2010;78(S1):S19-S23. doi.org/10.1002/cyto.b.20533
  10. Xochelli A, Oscier D, Stamatopoulos K. Clonal B-cell lymphocytosis of marginal zone origin. Best Practice & Research Clinical Haematology. 2017;30(1-2):77-83. doi.org/10.1016/j.beha.2016.08.028
  11. Jain P, Wang M. Mantle cell lymphoma: 2019 update on the diagnosis, pathogenesis, prognostication, and management. American journal of hematology. 2019;94(6):710-25. doi.org/10.1002/ajh.25487
  12. Oishi N, Montes-Moreno S, Feldman AL, editors. In situ neoplasia in lymph node pathology. Seminars in Diagnostic Pathology; 2018: Elsevier. doi.org/10.1053/j.semdp.2017.11.001
  13. Carvajal-Cuenca A, Sua LF, Silva NM, Pittaluga S, Royo C, Song JY, et al. In situ mantle cell lymphoma: clinical implications of an incidental finding with indolent clinical behavior. Haematologica. 2012;97(2):270. doi: 10.3324/haematol.2011.052621
  14. Hsu P, Yang T, Sheikh-Fayyaz S, Brody J, Bandovic J, Roy S, et al. Mantle cell lymphoma with in situ or mantle zone growth pattern: a study of five cases and review of literature. International journal of clinical and experimental pathology. 2014;7(3):1042.
  15. Rawstron AC, Kreuzer KA, Soosapilla A, Spacek M, Stehlikova O, Gambell P, et al. Reproducible diagnosis of chronic lymphocytic leukemia by flow cytometry: An European Research Initiative on CLL (ERIC) & European Society for Clinical Cell Analysis (ESCCA) Harmonisation project. Cytometry Part B: Clinical Cytometry. 2018;94(1):121-8. doi.org/10.1002/cyto.b.21595
  16. Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero G, Döhner H, et al. iwCLL guidelines for diagnosis, indications for treatment, response assessment, and supportive management of CLL. Blood, The Journal of the American Society of Hematology. 2018;131(25):2745-60. doi.org/10.1182/blood-2017-09-806398
  17. Zent CS, Burack WR. Mutations in chronic lymphocytic leukemia and how they affect therapy choice: focus on NOTCH1, SF3B1, and TP53. Hematology 2014, the American Society of Hematology Education Program Book. 2014;2014(1):119-24. doi.org/10.1182/asheducation-2014.1.119
  18. Rasi S, Khiabanian H, Ciardullo C, Terzi-di-Bergamo L, Monti S, Spina V, et al. Clinical impact of small subclones harboring NOTCH1, SF3B1 or BIRC3 mutations in chronic lymphocytic leukemia. Haematologica. 2016;101(4):e135. doi: 10.3324/haematol.2015.136051
  19. Cortese D, Sutton LA, Cahill N, Smedby K, Geisler C, Gunnarsson R, et al. On the way towards a ‘CLL prognostic index’: focus on TP53, BIRC3, SF3B1, NOTCH1 and MYD88 in a population-based cohort. Leukemia. 2014;28(3):710-3. doi:10.1038/leu.2013.333
  20. Hampel PJ, Ding W, Call TG, Rabe KG, Kenderian SS, Witzig TE, et al. Rapid disease progression following discontinuation of ibrutinib in patients with chronic lymphocytic leukemia treated in routine clinical practice. Leukemia & lymphoma. 2019;60(11):2712-9. doi.org/10.1080/10428194.2019.1602268
  21. Tadmor T, Levy I. Richter transformation in chronic lymphocytic leukemia: update in the era of novel agents. Cancers. 2021;13(20):5141. doi.org/10.3390/cancers13205141
  22. Condoluci A, Rossi D. Richter syndrome. Current oncology reports. 2021;23:1-10. doi.org/10.1007/s11912-020-01001-x
  23. Yamamoto JF, Goodman MT. Patterns of leukemia incidence in the United States by subtype and demographic characteristics, 1997–2002. Cancer Causes & Control. 2008;19:379-90. DOI 10.1007/s10552-007-9097-2
  24. Wang A, Guo W, Damiani D, Sumbly V, Goyal G, Du Z, et al. B-cell prolymphocytic leukemia with P53 abnormalities successfully treated with bendamustine and rituximab: a report of three cases. Translational Cancer Research. 2023;12(7):1873. doi: 10.21037/tcr-23-828
  25. Dearden C. How I treat prolymphocytic leukemia. Blood, The Journal of the American Society of Hematology. 2012;120(3):538-51. doi.org/10.1182/blood-2012-01-380139
  26. Matutes E, Morilla R, Owusu-Ankomah K, Houliham A, Meeus P, Catovsky D. The immunophenotype of hairy cell leukemia (HCL). Proposal for a scoring system to distinguish HCL from B-cell disorders with hairy or villous lymphocytes. Leukemia & lymphoma. 1994;14:57-61.
  27. Troussard X, Maître E, Cornet E. Hairy cell leukemia 2022: Update on diagnosis, risk‐stratification, and treatment. American Journal of Hematology. 2022;97(2):226-36. doi.org/10.1002/ajh.26390
  28. Perrone S, D’Elia GM, Annechini G, Ferretti A, Tosti ME, Foà R, et al. Splenic marginal zone lymphoma: prognostic factors, role of watch and wait policy, and other therapeutic approaches in the rituximab era. Leukemia research. 2016;44:53-60. doi.org/10.1016/j.leukres.2016.03.005
  29. Donzel M, Baseggio L, Fontaine J, Pesce F, Ghesquières H, Bachy E, et al. New insights into the biology and diagnosis of splenic marginal zone lymphomas. Current Oncology. 2021;28(5):3430-47. doi.org/10.3390/curroncol28050297
  30. Gautam A, Sreedharanunni S, Sachdeva MUS, Rana S, Kashyap D, Bose P, et al. The relative expression levels of CD148 and CD180 on clonal B cells and CD148/CD180 median fluorescence intensity ratios are useful in the characterization of mature B cell lymphoid neoplasms infiltrating blood and bone marrow–Results from a single centre pilot study. International Journal of Laboratory Hematology. 2021;43(5):1123-31. doi.org/10.1111/ijlh.13467
  31. Mayeur‐Rousse C, Guy J, Miguet L, Bouyer S, Geneviève F, Robillard N, et al. CD 180 expression in B‐cell lymphomas: A multicenter GEIL study. Cytometry Part B: Clinical Cytometry. 2016;90(5):462-6. doi.org/10.1002/cyto.b.21325
  32. Watkins AJ, Hamoudi RA, Zeng N, Yan Q, Huang Y, Liu H, et al. An integrated genomic and expression analysis of 7q deletion in splenic marginal zone lymphoma. 2012. doi.org/10.1371/journal.pone.0044997
  33. Bertoni F, Rossi D, Zucca E. Recent advances in understanding the biology of marginal zone lymphoma. F1000Research. 2018;7. doi: 10.12688/f1000research.13826.1
  34. Yan Q, Huang Y, Watkins AJ, Kocialkowski S, Zeng N, Hamoudi RA, et al. BCR and TLR signaling pathways are recurrently targeted by genetic changes in splenic marginal zone lymphomas. haematologica. 2012;97(4):595. doi: 10.3324/haematol.2011.054080
  35. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, et al. WHO classification of tumours of haematopoietic and lymphoid tissues: International agency for research on cancer Lyon, France; 2008.
  36. Yilmaz E, Chhina A, Nava VE, Aggarwal A. A review on splenic diffuse red pulp small B-cell lymphoma. Current Oncology. 2021;28(6):5148-54. doi.org/10.3390/curroncol28060431
  37. Curiel-Olmo S, Mondéjar R, Almaraz C, Mollejo M, Cereceda L, Marès R, et al. Splenic diffuse red pulp small B-cell lymphoma displays increased expression of cyclin D3 and recurrent CCND3 mutations. Blood, The Journal of the American Society of Hematology. 2017;129(8):1042-5. doi.org/10.1182/blood-2016-11-751024
  38. Rai V, Saha A, Gondha S, Manimaran P, Sawhney J. Splenic B-cell lymphoma/leukemia with prominent nucleoli: A three-case series of the newly named old entity and review of literature. Journal of Cancer Research and Therapeutics. 2023. DOI: 10.4103/jcrt.jcrt_1931_22
  39. Tran J, Gaulin C, Tallman MS. Advances in the treatment of hairy cell leukemia variant. Current treatment options in oncology. 2022;23(1):99-116. DOI 10.1007/s11864-021-00927-z
  40. Wang W, Lin P. Lymphoplasmacytic lymphoma and Waldenström macroglobulinaemia: clinicopathological features and differential diagnosis. Pathology. 2020;52(1):6-14. doi.org/10.1016/j.pathol.2019.09.009
  41. Treon S, Hunter Z, Aggarwal A, Ewen E, Masota S, Lee C, et al. Characterization of familial Waldenström's macroglobulinemia. Annals of Oncology. 2006;17(3):488-94. doi.org/10.1093/annonc/mdj111
  42. Pozzato G, Mazzaro C, Crovatto M, Modolo ML, Ceselli S, Mazzi G, et al. Low-grade malignant lymphoma, hepatitis C virus infection, and mixed cryoglobulinemia. 1994. doi.org/10.1182/blood.V84.9.3047.3047
  43. Konoplev S, Medeiros LJ, Bueso-Ramos CE, Jorgensen JL, Lin P. Immunophenotypic profile of lymphoplasmacytic lymphoma/Waldenström macroglobulinemia. American journal of clinical pathology. 2005;124(3):414-20. doi.org/10.1309/3G1XDX0DVHBNVKB4
  44. Treon SP, Xu L, Yang G, Zhou Y, Liu X, Cao Y, et al. MYD88 L265P somatic mutation in Waldenström's macroglobulinemia. New England Journal of Medicine. 2012;367(9):826-33. DOI: 10.1056/NEJMoa1200710
  45. Treon SP, Xu L, Guerrera ML, Jimenez C, Hunter ZR, Liu X, et al. Genomic landscape of Waldenström macroglobulinemia and its impact on treatment strategies. Journal of Clinical Oncology. 2020;38(11):1198. doi: 10.1200/JCO.19.02314
  46. Zucca E, Bertoni F. The spectrum of MALT lymphoma at different sites: biological and therapeutic relevance. Blood, The Journal of the American Society of Hematology. 2016;127(17):2082-92. doi.org/10.1182/blood-2015-12-624304
  47. Cheah CY, Zucca E, Rossi D, Habermann TM. Marginal zone lymphoma: present status and future perspectives. Haematologica. 2022;107(1):35. doi: 10.3324/haematol.2021.278755
  48. Zucca E, Raderer M. Extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue (MALT lymphoma). Indolent Lymphomas. 2021:93-115. doi.org/10.1007/978-3-030-55989-2
  49. Falini B, Tiacci E, Pucciarini A, Bigerna B, Kurth J, Hatzivassiliou G, et al. Expression of the IRTA1 receptor identifies intraepithelial and subepithelial marginal zone B cells of the mucosa-associated lymphoid tissue (MALT). Blood. 2003;102(10):3684-92. doi.org/10.1182/blood-2003-03-0750
  50. Spina V, Khiabanian H, Messina M, Monti S, Cascione L, Bruscaggin A, et al. The genetics of nodal marginal zone lymphoma. Blood, The Journal of the American Society of Hematology. 2016;128(10):1362-73. doi.org/10.1182/blood-2016-02-696757
  51. Knauf W, Abenhardt W, Koenigsmann M, Maintz C, Sandner R, Zahn MO, et al. Rare lymphomas in routine practice–Treatment and outcome in marginal zone lymphoma in the prospective German Tumour Registry Lymphatic Neoplasms. Hematological Oncology. 2021;39(3):313-25. doi.org/10.1002/hon.2868
  52. Thieblemont C, Molina T, Davi F. Optimizing therapy for nodal marginal zone lymphoma. Blood, The Journal of the American Society of Hematology. 2016;127(17):2064-71. doi.org/10.1182/blood-2015-12-624296
  53. Koo M, Ohgami RS. Pediatric-type follicular lymphoma and pediatric nodal marginal zone lymphoma: recent clinical, morphologic, immunophenotypic, and genetic insights. Advances in Anatomic Pathology. 2017;24(3):128-35. doi.org/10.1097/PAP.0000000000000144
  54. Gitelson E, Al-Saleem T, Robu V, Millenson MM, Smith MR. Pediatric nodal marginal zone lymphoma may develop in the adult population. Leukemia & lymphoma. 2010;51(1):89-94. doi.org/10.3109/10428190903349670
  55. Tadmor T, Polliack A. Nodal marginal zone lymphoma: clinical features, diagnosis, management and treatment. Best Practice & Research Clinical Haematology. 2017;30(1-2):92-8. doi.org/10.1016/j.beha.2016.08.026
  56. O'Suoji C, Welch JJ, Perkins SL, Smith LM, Weitzman S, Simko SJ, et al. Rare pediatric non‐Hodgkin lymphomas: a report from Children's Oncology Group study ANHL 04B1. Pediatric Blood & Cancer. 2016;63(5):794-800. doi.org/10.1002/pbc.25881
  57. Gibson SE, Swerdlow SH. How I diagnose primary cutaneous marginal zone lymphoma. American Journal of Clinical Pathology. 2020;154(4):428-49. doi.org/10.1093/ajcp/aqaa116
  58. Oertel M, Khaled E, Carsten W, Kerstin S, Eich HT. De-escalated radiotherapy for indolent primary cutaneous B-cell lymphoma. Strahlentherapie Und Onkologie. 2020;196(2):126-31. DOI:10.1007/s00066-019-01541-7
  59. Vitiello P, Sica A, Ronchi A, Caccavale S, Franco R, Argenziano G. Primary cutaneous B-cell lymphomas: an update. Frontiers in Oncology. 2020;10:651. doi.org/10.3389/fonc.2020.00651
  60. Edinger JT, Kant JA, Swerdlow SH. Cutaneous marginal zone lymphomas have distinctive features and include 2 subsets. The American journal of surgical pathology. 2010;34(12):1830-41. DOI: 10.1097/PAS.0b013e3181f72835
  61. Piccaluga PP, Califano A, Klein U, Agostinelli C, Bellosillo B, Gimeno E, et al. Gene expression analysis provides a potential rationale for revising the histological grading of follicular lymphomas. Haematologica. 2008;93(7):1033-8. doi.org/10.3324/haematol.12754
  62. Etebari M, Gatua M, Navari M, Piccaluga PP, Kaggia S, Rogena E, et al. Molecular Detection of BCL2/IGH Rearrangement in Follicular Lymphoma in Low Resource Settings-A Phase III Diagnostic Accuracy Study. Biomedical Journal of Scientific & Technical Research. 2021;39(3):31439-42. DOI: 10.26717/BJSTR.2021.39.006318
  63. Carbone A, Roulland S, Gloghini A, Younes A, von Keudell G, López-Guillermo A, et al. Follicular lymphoma. Nature reviews Disease primers. 2019;5(1):83. doi.org/10.1038/s41572-019-0132-x
  64. Cree IA, Tan PH, Travis WD, Wesseling P, Yagi Y, White VA, et al. Counting mitoses: SI (ze) matters! Modern Pathology. 2021;34(9):1651-7. doi.org/10.1038/s41379-021-00825-7
  65. Metter GE, Nathwani BN, Burke JS, Winberg CD, Mann RB, Barcos M, et al. Morphological subclassification of follicular lymphoma: variability of diagnoses among hematopathologists, a collaborative study between the Repository Center and Pathology Panel for Lymphoma Clinical Studies. Journal of Clinical Oncology. 1985;3(1):25-38. doi.org/10.1200/JCO.1985.3.1.25
  66. Piccaluga PP, Pileri SA, Agostinelli C, Klapper W, Lennert K. Follicular lymphoma: still Six characters in search of an author? Leukemia & Lymphoma. 2011;52(9):1655-67. doi.org/10.3109/10428194.2011.575493
  67. Hershkovitz‐Rokah O, Pulver D, Lenz G, Shpilberg O. Ibrutinib resistance in mantle cell lymphoma: clinical, molecular and treatment aspects. British journal of haematology. 2018;181(3):306-19. doi.org/10.1111/bjh.15108
  68. Saba NS, Liu D, Herman SE, Underbayev C, Tian X, Behrend D, et al. Pathogenic role of B-cell receptor signaling and canonical NF-κB activation in mantle cell lymphoma. Blood, The Journal of the American Society of Hematology. 2016;128(1):82-92. . doi.org/10.1182/blood-2015-11-681460
  69. Royo C, Navarro A, Clot G, Salaverria I, Giné E, Jares P, et al. Non-nodal type of mantle cell lymphoma is a specific biological and clinical subgroup of the disease. Leukemia. 2012;26(8):1895-8. doi:10.1038/leu.2012.72
  70. Navarro A, Clot G, Royo C, Jares P, Hadzidimitriou A, Agathangelidis A, et al. Molecular subsets of mantle cell lymphoma defined by the IGHV mutational status and SOX11 expression have distinct biologic and clinical features. Cancer research. 2012;72(20):5307-16. https://doi.org/10.1158/0008-5472.CAN-12-1615
  71. Xu J, Wang L, Li J, Saksena A, Wang SA, Shen J, et al. SOX11-negative Mantle Cell Lymphoma. The American Journal of Surgical Pathology. 2019;43(5):710-6. doi.org/10.1097/PAS.0000000000001233
  72. Falini B, Martino G, Lazzi S. A comparison of the International Consensus and 5th World Health Organization classifications of mature B-cell lymphomas. Leukemia. 2023;37(1):18-34. doi.org/10.1038/s41375-022-01764-1
  73. Kledus F, Filip D, Mráz M. Transformation of indolent follicular lymphoma into diffuse large B-cell lymphoma-the molecular basis of" cancer aggressiveness". Klinicka Onkologie: Casopis Ceske a Slovenske Onkologicke Spolecnosti. 2023;36(4):353-63. doi.org/10.48095/ccko2023353
  74. Zerbini MCN, Soares FA, Velloso EDRP, Paes RP. World Health Organization Classification of tumors of hematopoietic and lymphoid tissues, 2008–major changes from the 3rd edition, 2001. Revista da Associação Médica Brasileira (English Edition). 2011;57(1):66-73. doi.org/10.1016/S2255-4823(11)70019-4
  75. Pasqualucci L, Dalla-Favera R. Genetics of diffuse large B-cell lymphoma. Blood. 2018;131(21):2307-19. doi.org/10.1182/blood-2017-11-764332
  76. Reddy A, Zhang J, Davis NS, Moffitt AB, Love CL, Waldrop A, et al. Genetic and functional drivers of diffuse large B cell lymphoma. Cell. 2017;171(2):481-94. e15. doi.org/10.1016/j.cell.2017.09.027
  77. Horn H, Kalmbach S, Wagener R, Staiger AM, Hüttl K, Mottok A, et al. A diagnostic approach to the identification of Burkitt-like lymphoma with 11q aberration in aggressive B-cell lymphomas. The American journal of surgical pathology. 2021;45(3):356-64. doi.org/10.1097/PAS.0000000000001613
  78. Salaverria I, Martin-Guerrero I, Wagener R, Kreuz M, Kohler CW, Richter J, et al. A recurrent 11q aberration pattern characterizes a subset of MYC-negative high-grade B-cell lymphomas resembling Burkitt lymphoma. Blood, The Journal of the American Society of Hematology. 2014;123(8):1187-98. doi.org/10.1182/blood-2013-06-507996
  79. Yamada S, Oka Y, Muramatsu M, Hashimoto Y. High-grade B-cell lymphoma with 11q aberrations: A single-center study. Journal of clinical and experimental hematopathology. 2023;63(2):121-31. doi.org/10.3960/jslrt.23007
  80. Pizzi M, Bongiovanni L, Lorenzi L, Righi S, Scarmozzino F, Balzarini P, et al. Large B-cell lymphoma with IRF4 rearrangement: a multi-centric study with focus on potential misleading phenotypes. Virchows Archiv. 2023:1-6. doi.org/10.1007/s00428-023-03689-1
  81. Song JY, Dirnhofer S, Piris MA, Quintanilla-Martínez L, Pileri S, Campo E. Diffuse large B-cell lymphomas, not otherwise specified, and emerging entities. Virchows Archiv. 2023;482(1):179-92. doi.org/10.1007/s00428-022-03466-6
  82. Gisriel SD, Yuan J, Braunberger RC, Maracaja DL, Chen X, Wu X, et al. Human herpesvirus 8-negative effusion-based large B-cell lymphoma: a distinct entity with unique clinicopathologic characteristics. Modern Pathology. 2022;35(10):1411-22. doi.org/10.1038/s41379-022-01091-x
  83. Kaji D, Ota Y, Sato Y, Nagafuji K, Ueda Y, Okamoto M, et al. Primary human herpesvirus 8–negative effusion-based lymphoma: a large B-cell lymphoma with favorable prognosis. Blood Advances. 2020;4(18):4442-50. doi.org/10.1182/bloodadvances.2020002293
  84. Swerdlow SH, Campo E, Pileri SA, Harris NL, Stein H, Siebert R, et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood, The Journal of the American Society of Hematology. 2016;127(20):2375-90. doi.org/10.1182/blood-2016-01-643569
  85. Boyer DF, McKelvie PA, De Leval L, Edlefsen KL, Ko Y-H, Aberman ZA, et al. Fibrin-associated EBV-positive large B-cell lymphoma. The American journal of surgical pathology. 2017;41(3):299-312. doi.org/10.1097/PAS.0000000000000775
  86. Chu W, Zhang B, Zhang Y, Tian D, Tang Y, Zhang W, et al. Fibrin-associate diffuse large B-Cell lymphoma arising in a left atrial myxoma: A case report and literature review✰,✰✰. Cardiovascular Pathology. 2020;49:107264. doi.org/10.1016/j.carpath.2020.107264
  87. Loong F, Chan AC, Ho BC, Chau Y-P, Lee H-Y, Cheuk W, et al. Diffuse large B-cell lymphoma associated with chronic inflammation as an incidental finding and new clinical scenarios. Modern Pathology. 2010;23(4):493-501. doi.org/10.1038/modpathol.2009.168
  88. Maedeh M, Francisco T, Sunny K, Craig O, Jessica D, Guang F. Recurrent fibrin associated diffuse large B-cell lymphoma: a case report. Human Pathology: Case Reports. 2021;25:200538. doi.org/10.1016/j.ehpc.2021.200538
  89. Boroumand N, Ly TL, Sonstein J, Medeiros LJ. Microscopic diffuse large B-cell lymphoma (DLBCL) occurring in pseudocysts: do these tumors belong to the category of DLBCL associated with chronic inflammation? The American Journal of Surgical Pathology. 2012;36(7):1074-80. DOI: 10.1097/PAS.0b013e3182515fb5
  90. Quintanilla-Martinez L, Fend F. Mediastinal gray zone lymphoma. haematologica. 2011;96(4):496. doi: 10.3324/haematol.2011.043026
  91. Wilson WH, Pittaluga S, Nicolae A, Camphausen K, Shovlin M, Steinberg SM, et al. A prospective study of mediastinal gray-zone lymphoma. Blood, The Journal of the American Society of Hematology. 2014;124(10):1563-9. doi.org/10.1182/blood-2014-03-564906
  92. Collinge B, Hilton L, Wong J, Ben‐Neriah S, Rushton C, Slack G, et al. Characterization of the genetic landscape of high‐grade b‐cell lymphoma, nos–An llmpp project. Hematological Oncology. 2021;39. doi.org/10.1002/hon.13_2880
  93. Bellan C, Lazzi S, Hummel M, Palummo N, de Santi M, Amato T, et al. Immunoglobulin gene analysis reveals 2 distinct cells of origin for EBV-positive and EBV-negative Burkitt lymphomas. Blood. 2005;106(3):1031-6. doi.org/10.1182/blood-2005-01-0168
  94. Piccaluga PP, De Falco G, Kustagi M, Gazzola A, Agostinelli C, Tripodo C, et al. Gene expression analysis uncovers similarity and differences among Burkitt lymphoma subtypes. Blood, The Journal of the American Society of Hematology. 2011;117(13):3596-608. doi.org/10.1182/blood-2010-08-301556
  95. Abate F, Ambrosio MR, Mundo L, Laginestra MA, Fuligni F, Rossi M, et al. Distinct viral and mutational spectrum of endemic Burkitt lymphoma. PLoS pathogens. 2015;11(10):e1005158. doi.org/10.1371/journal.ppat.1005158
  96. Navari M, Etebari M, Ibrahimi M, Leoncini L, Piccaluga PP. Pathobiologic roles of Epstein–Barr virus-encoded MicroRNAs in human lymphomas. International journal of molecular sciences. 2018;19(4):1168. doi.org/10.3390/ijms19041168
  97. Piccaluga PP, Navari M, De Falco G, Ambrosio MR, Lazzi S, Fuligni F, et al. Virus-encoded microRNA contributes to the molecular profile of EBV-positive Burkitt lymphomas. Oncotarget. 2016;7(1):224. doi: 10.18632/oncotarget.4399
  98. Grande BM, Gerhard DS, Jiang A, Griner NB, Abramson JS, Alexander TB, et al. Genome-wide discovery of somatic coding and noncoding mutations in pediatric endemic and sporadic Burkitt lymphoma. Blood, The Journal of the American Society of Hematology. 2019;133(12):1313-24. doi.org/10.1182/blood-2018-09-871418
  99. Mundo L, Ambrosio MR, Picciolini M, Lo Bello G, Gazaneo S, Del Porro L, et al. Unveiling another missing piece in EBV-driven lymphomagenesis: EBV-encoded microRNAs expression in EBER-negative Burkitt lymphoma cases. Frontiers in Microbiology. 2017;8:229. doi.org/10.3389/fmicb.2017.00229
  100. Vega F, Miranda RN, Medeiros LJ. KSHV/HHV8-positive large B-cell lymphomas and associated diseases: a heterogeneous group of lymphoproliferative processes with significant clinicopathological overlap. Modern pathology. 2020;33(1):18-28. doi.org/10.1038/s41379-019-0365-y
  101. Oksenhendler E, Boutboul D, Fajgenbaum D, Mirouse A, Fieschi C, Malphettes M, et al. The full spectrum of Castleman disease: 273 patients studied over 20 years. British Journal of Haematology. 2018;180(2):206-16. doi.org/10.1111/bjh.15019
  102. Bhavsar T, Lee JC, Perner Y, Raffeld M, Xi L, Pittaluga S, et al. KSHV-associated and EBV-associated Germinotropic Lymphoproliferative Disorder: New Findings and Review of the Literature. Am J Surg Pathol. 2017;41(6):795-800. 10.1097/PAS.0000000000000823
  103. Dupin N, Diss TL, Kellam P, Tulliez M, Du M-Q, Sicard D, et al. HHV-8 is associated with a plasmablastic variant of Castleman disease that is linked to HHV-8–positive plasmablastic lymphoma. Blood, The Journal of the American Society of Hematology. 2000;95(4):1406-12. doi.org/10.1182/blood.V95.4.1406.004k26_1406_1412
  104. Chadburn A, Said J, Gratzinger D, Chan JK, de Jong D, Jaffe ES, et al. HHV8/KSHV-positive lymphoproliferative disorders and the spectrum of plasmablastic and plasma cell neoplasms: 2015 SH/EAHP workshop report—part 3. American Journal of Clinical Pathology. 2017;147(2):171-87. doi.org/10.1093/ajcp/aqw218
  105. Riva G, Luppi M, Barozzi P, Forghieri F, Potenza L. How I treat HHV8/KSHV-related diseases in posttransplant patients. Blood, The Journal of the American Society of Hematology. 2012;120(20):4150-9. doi.org/10.1182/blood-2012-04-421412
  106. Simonelli C, Spina M, Cinelli R, Talamini R, Tedeschi R, Gloghini A, et al. Clinical features and outcome of primary effusion lymphoma in HIV-infected patients: a single-institution study. Journal of Clinical Oncology. 2003;21(21):3948-54. DOI: 10.1200/JCO.2003.06.013
  107. Mottok A, Steidl C. Biology of classical Hodgkin lymphoma: implications for prognosis and novel therapies. Blood, The Journal of the American Society of Hematology. 2018;131(15):1654-65. doi.org/10.1182/blood-2017-09-772632
  108. Gobbi PG, Cavalli C, Gendarini A, Crema A, Ricevuti G, Federico M, et al. Reevaluation of prognostic significance of symptoms in Hodgkin's disease. Cancer. 1985;56(12):2874-80. doi.org/10.1002/1097-0142(19851215)56:12<2874::AID-CNCR2820561227>3.0.CO;2-2
  109. Schmid C, Pan L, Diss T, Isaacson PG. Expression of B-cell antigens by Hodgkin's and Reed-Sternberg cells. Am J Pathol. 1991;139(4):701-7.
  110. Schmitz R, Stanelle J, Hansmann ML, Küppers R. Pathogenesis of classical and lymphocyte-predominant Hodgkin lymphoma. Annu Rev Pathol. 2009;4:151-74. doi: 10.1146/annurev.pathol.4.110807.092209
  111. Venkataraman G, Song JY, Tzankov A, Dirnhofer S, Heinze G, Kohl M, et al. Aberrant T-cell antigen expression in classical Hodgkin lymphoma is associated with decreased event-free survival and overall survival. Blood. 2013;121(10):1795-804. doi.org/10.1182/blood-2012-06-439455
  112. Spina V, Bruscaggin A, Cuccaro A, Martini M, Di Trani M, Forestieri G, et al. Circulating tumor DNA reveals genetics, clonal evolution, and residual disease in classical Hodgkin lymphoma. Blood. 2018;131(22):2413-25. doi.org/10.1182/blood-2017-11-812073
  113. Mason DY, Banks PM, Chan J, Cleary ML, Delsol G, de Wolf Peeters C, et al. Nodular lymphocyte predominance Hodgkin's disease: A distinct clinicopathological entity. LWW; 1994. p. 526-30.
  114. Eichenauer DA, Engert A. How I treat nodular lymphocyte-predominant Hodgkin lymphoma. Blood, The Journal of the American Society of Hematology. 2020;136(26):2987-93. doi.org/10.1182/blood.2019004044
  115. Lee AI, LaCasce AS. Nodular lymphocyte predominant Hodgkin lymphoma. The oncologist. 2009;14(7):739-51. doi.org/10.1634/theoncologist.2009-0099
  116. Thurner L, Fadle N, Regitz E, Roth S, Cetin O, Kos IA, et al. B-cell receptor reactivity against Rothia mucilaginosa in nodular lymphocyte-predominant Hodgkin lymphoma. Haematologica. 2020. doi: 10.3324/haematol.2023.282698
  117. Hartmann S, Eichenauer DA, Plütschow A, Mottok A, Bob R, Koch K, et al. The prognostic impact of variant histology in nodular lymphocyte-predominant Hodgkin lymphoma: a report from the German Hodgkin Study Group (GHSG). Blood, The Journal of the American Society of Hematology. 2013;122(26):4246-52. doi.org/10.1182/blood-2013-07-515825
  118. Gupta L, Suku P, Dash A, Bose P, Sharma P, Mallik N, et al. Detection of circulating normal and tumor plasma cells in newly diagnosed patients of multiple myeloma and their associations with clinical and laboratory parameters. Current Problems in Cancer. 2024;48:101025. doi.org/10.1016/j.currproblcancer.2023.101025Get rights and content
  119. Sarı M, Sarı S, Nalcacı M. The effect of suppressed levels of uninvolved immunoglobulins on the prognosis of symptomatic multiple myeloma. Turkish Journal of Hematology. 2017;34(2):131. DOI: 10.4274/tjh.2016.0161
  120. Bruehl FK, Mannion P, Barbato E, Nakashima MO, Cook JR. IgM monoclonal gammopathy of undetermined significance: clinicopathologic features with and without IgM-related disorders. Haematologica. 2023;108(10):2764. doi: 10.3324/haematol.2022.282389
  121. Fend F, Dogan A, Cook JR. Plasma cell neoplasms and related entities—evolution in diagnosis and classification. Virchows Archiv. 2023;482(1):163-77. doi.org/10.1007/s00428-022-03431-3
  122. Agbuduwe C, Iqbal G, Cairns D, Menzies T, Dunn J, Gregory W, et al. Clinical characteristics and outcomes of IgD myeloma: experience across UK national trials. Blood Advances. 2022;6(17):5113-23. doi.org/10.1182/bloodadvances.2022007608
  123. Karam S, Haidous M, Abou Dalle I, Dendooven A, Moukalled N, Van Craenenbroeck A, et al. Monoclonal Gammopathy of Renal Significance: multidisciplinary approach to diagnosis and treatment. Critical Reviews in Oncology/Hematology. 2023:103926. doi.org/10.1016/j.critrevonc.2023.103926
  124. Dupuis MM, Tuchman SA. Non-secretory multiple myeloma: from biology to clinical management. OncoTargets and therapy. 2016:7583-90. doi.org/10.2147/OTT.S122241
  125. Landsman A, Barua P, Podrumar A. A Rare Coexistence of Multiple Myeloma and Polycythemia Vera. Journal of Hematology. 2023;12(5):227. DOI:10.14740/jh1167
  126. Yan W, Lv R, Xu J, Li L, Cui J, Liu Y, et al. Adenopathy and extensive skin patch overlying a plasmacytoma (AESOP) syndrome: a case report and literature review. Annals of Hematology. 2023:1-3. doi.org/10.1007/s00277-023-05465-2
  127. Lipsker D, Rondeau M, Massard G, Grosshans E. The AESOP (adenopathy and extensive skin patch overlying a plasmacytoma) syndrome: report of 4 cases of a new syndrome revealing POEMS (polyneuropathy, organomegaly, endocrinopathy, monoclonal protein, and skin changes) syndrome at a curable stage. Medicine. 2003;82(1):51-9.
  128. Farooq U, Choudhary S, McLeod MP, Torchia D, Rongioletti F, Romanelli P. Adenopathy and extensive skin patch overlying a plasmacytoma (AESOP) syndrome. The Journal of Clinical and Aesthetic Dermatology. 2012;5(11):25.