Optical Coherence Tomography Angiography in Glaucoma: a review on structural-functional relationship

From Top Italian Scientists Journal
Revision as of 09:47, 5 September 2024 by Admin (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Published
September 5, 2024
Title
Optical Coherence Tomography Angiography in Glaucoma: a review on structural-functional relationship
Author
Luciano Quaranta
DOI
10.62684/BFIT3273
Keywords
Optical Coherence Tomography Angiography; OCTA; Glaucoma.
Downloads
Download PDF
Download PDF

Luciano Quaranta

Centro Oculistico Italiano, Brescia, Italy

Abstract

Optical coherence tomography angiography (OCTA) is a non-invasive imaging tool for visualizing the ophthalmic microvasculature. Vessel density (VD) is mainly used as a metric for quantifying the ophthalmic microvasculature. The anatomic area of interest for OCTA in glaucoma are the optic nerve head area including the peripapillary region, and the macular region. Specifically, VD of the superficial peripapillary and superficial macular microvasculature is reduced in glaucoma patients compared to normal subjects. Recently VD has been correlated with functional deficits as measured by visual field (VF). The clinical applicability of OCTA in glaucoma management is limited due to the prevalence of imaging artifacts, and the knowledge of primary or secondary impairment of blood flow and VD in glaucoma. Overall, OCTA can play a complementary role in structural OCT imaging and VF testing to aid in the monitoring of glaucoma.

Declarations

Conflict of Interest

The Author declares that there is no conflict of interest.

References

  1. Tham Y-C, Li X, Wong TY, Quigley HA, Aung T, Cheng C-Y: Global prevalence of glaucoma and projections of glaucoma bur- den through 2040. Ophthalmology 2014;121: 2081–2090.
  2. European Glaucoma Society Terminology and Guidelines for Glaucoma, 4th Edition – Chapter 3: treatment principles and options supported by the EGS Foundation. Br J Oph- thalmol 2017;101:130–195.
  3. Lee EJ, Lee KM, Lee SH, Kim T-W: OCT an- giography of the peripapillary retina in pri- mary open-angle glaucoma. Invest Opthal- mol Vis Sci 2016;57:6265–6270.
  4. Van Melkebeke L, Barbosa-Breda J, Huygens M, Stalmans I, Optical Coherence Tomography Angiography in Glaucoma: A Review, Ophthalmic Res 2018;60:139–151
  5. Jia Y, Morrison JC, Tokayer J, et al. Quantitative OCT angiography of optic nerve head blood flow. Biomed Opt Express 2012; 3: 3127–3137.
  6. Triolo G, Rabiolo A, Shemonski ND, et al. Optical coherence tomography angiography macular and peripapillary vessel perfusion density in healthy subjects, glaucoma suspects, and glaucoma patients. Invest Ophthalmol Vis Sci 2017; 58: 5713–5722
  7. Yarmohammadi A, Zangwill LM, Diniz-Filho A, et al. Optical coherence tomography angiography vessel density in healthy, glaucoma suspect, and glaucoma eyes. Invest Ophthalmol Vis Sci 2016; 57: OCT451–OCT459
  8. Triolo G, Rabiolo A, Optical coherence tomography and optical coherence tomography angiography in glaucoma: diagnosis, progression, and correlation with functional tests Ther Adv Ophthalmol 2020, Vol. 12: 1–9
  9. Jia Y, Wei E, Wang X, et al. Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology. 2014; 121(7):1322–32
  10. Yarmohammadi A, Zangwill LM, Diniz-Filho A, et al. Relationship between Optical Coherence Tomography Angiography Vessel Density and Severity of Visual Field Loss in Glaucoma. Ophthalmology. 2016; 123(12):2498–508
  11. Akagi T, Iida Y, Nakanishi H, et al. Microvascular Density in Glaucomatous Eyes With Hemifield Visual Field Defects: An Optical Coherence Tomography Angiography Study. Am J Ophthalmol. 2016; 168:237–49
  12. Campbell JP, Zhang M, Hwang TS, et al. Detailed Vascular Anatomy of the Human Retina by Projection-Resolved Optical Coherence Tomography Angiography. Sci Rep. 2017; 7:42201
  13. Penteado RC, Zangwill LM, Daga FB, Saunders LJ, Manalastas PIC, Shoji T, Akagi T, Christopher M, Yarmohammadi A, Moghimi S, Weinreb RN, Optical Coherence Tomography Angiography Macular Vascular Density Measurements and the Central 10-2 Visual Field in Glaucoma, J Glaucoma. 2018 June ; 27(6): 481–489
  14. Hood DC, Slobodnick A, Raza AS, et al. Early glaucoma involves both deep local, and shallow widespread, retinal nerve fiber damage of the macular region. Invest Ophthalmol Vis Sci 2014
  15. Optical coherence tomography angiography in glaucoma Bojikian, Karine D.; Chen, Philip P.; Wen, Joanne C. Current Opinion in Ophthalmology
  16. Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G. Optical coherence tomography angiography. Prog Retin Eye Res. 2018;64:1–55
  17. Roland Rocholz, Federico Corvi, Julian Weichsel, Stefan Schmidt, and Giovanni Staurenghi. OCT Angiography (OCTA) in Retinal Diagnostics. Hih Resolution Imaging in Microscopy and Ophthalmology: New Frontiers in Biomedical Optics (Springer)
  18. Spaide RF, Klancnik JM Jr, Cooney MJ. Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol. 2015;133(1):45–50
  19. Matsunaga D, Yi J, Puliafito CA, Kashani AH. OCT angiography in healthy human subjects. Ophthalmic Surg Las Imag Retin. 2014;45(6):510–5
  20. Tan PE, Yu PK, Balaratnasingam C, Cringle SJ, Morgan WH, McAllister IL, Yu DY. Quantitative confocal imaging of the retinal microvasculature in the human retina. Invest Ophthalmol Vis Sci. 2012;53(9):5728–36
  21. Johnson RN, Fu AD, McDonald HR, Jumper JM, Ai E, Cunningham ET, Lujan BJ. Fluorescein angiography: basic principles and interpretation. In: Retina. 5th ed. Amsterdam: Elsevier Inc; 2012.
  22. European Glaucoma Society Terminology and Guidelines for Glaucoma, 4th Edition – Chapter 3: treatment principles and options supported by the EGS Foundation. Br J Ophthalmol 2017
  23. Michelessi M, Lucenteforte E, Oddone F, Brazzelli M, Parravano M, Franchi S, et al: Optic nerve head and fibre layer imaging for diagnosing glaucoma. Cochrane Database Syst Rev 2015
  24. Prum BE, Rosenberg LF, Gedde SJ, Mansberger SL, Stein JD, Moroi SE, et al: Primary open-angle glaucoma PPP. Am Acad Ophthalmol 2015
  25. Shin JW, Lee J, Kwon J, Choi J, Kook MS: Regional vascular density-visual field sensitivity relationship in glaucoma according to disease severity. Br J Ophthalmol 2017
  26. Rao HL, Pradhan ZS, Weinreb RN, Riyazuddin M, Dasari S, Venugopal JP, et al: Vessel density and structural measurements of optical coherence tomography in primary angle closure and primary angle closure glaucoma. Am J Ophthalmol 2017
  27. Takusagawa HL, Liu L, Ma KN, Jia Y, Gao SS, Zhang M, et al: Projection-resolved optical coherence tomography angiography of macular retinal circulation in glaucoma. Ophthalmology 2017
  28. Weinreb RN, Harris A. Ocular blood flow in glaucoma. Vol. 6. Kugler Publications; 2009
  29. Flammer J, Orgul S, Costa VP, et al. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res. 2002
  30. Schmidl D, Garhofer G, Schmetterer L. The complex interaction between ocular perfusion pressure and ocular blood flow - relevance for glaucoma. Exp Eye Res. 2011
  31. Flammer J. The vascular concept of glaucoma. Surv Ophthalmol. 1994;38(Suppl):S3–6
  32. Kornzweig AL, Eliasoph I, Feldstein M. Selective atrophy of the radial peripapillary capillaries in chronic glaucoma. Arch Ophthalmol. 1968;
  33. Rankin SJ, Drance SM, Buckley AR, Walman BE. Visual field correlations with color Doppler studies in open angle glaucoma. J Glaucoma. 1996
  34. Sato EA, Ohtake Y, Shinoda K, et al. Decreased blood flow at neuroretinal rim of optic nerve head corresponds with visual field deficit in eyes with normal tension glaucoma. Graefes Arch Clin Exp Ophthalmol. 2006
  35. Hwang JC, Konduru R, Zhang X, et al. Relationship among visual field, blood flow, and neural structure measurements in glaucoma. Invest Ophthalmol Vis Sci. 2012
  36. Harris A, Kagemann L, Cioffi GA. Assessment of human ocular hemodynamics. Surv Ophthalmol. 1998
  37. Schuman JS. Measuring Blood Flow: So What? JAMA Ophthalmol. 2015
  38. Anna Sophie Mursch-Edlmayr, Nikolaus Luft, Dominika Podkowinski, Michael Ring, Leopold Schmetterer and Matthias Bolz Laser speckle flowgraphy derived characteristics of optic nerve head perfusion in normal tension glaucoma and healthy individuals: a Pilot study, Sci Rep. 2018; 8: 5343.
  39. Sugiyama T, Araie M, Riva CE, Schmetterer L, Orgul S. Use of laser speckle flowgraphy in ocular blood flow research. Acta Ophthalmol. 2010;88:723–729
  40. Naoki Kiyota, Hiroshi Kunikata, Yukihiro Shiga, Kazuko Omodaka, Toru Nakazawa. Ocular microcirculation measurement with laser speckle flowgraphy and optical coherence tomography angiography in glaucoma. Acta Ophtalmol. 2018 96: e485–e492
  41. Rankin SJ Color Doppler imaging of the retrobulbar circulation in glaucoma, Surv Ophthalmol. 1999
  42. Shou Xu et al, Color Doppler Imaging Analysis of Ocular Blood Flow Velocities in Normal Tension Glaucoma Patients: A Meta-Analysis, Journal of Ophtalmology 2015
  43. Soo Ji Jeon et al, Association of Retinal Blood Flow with Progression of Visual Field in Glaucoma, Nature 2019
  44. Chen, H. S., Liu, C. H., Wu, W. C., Tseng, H. J. & Lee, Y. S. Optical Coherence Tomography Angiography of the Superficial Microvasculature in the Macular and Peripapillary Areas in Glaucomatous and Healthy Eyes. Investigative ophthalmology & visual science 58, 3637–3645 (2017)
  45. Yarmohammadi, A. et al. Peripapillary and Macular Vessel Density in Patients with Glaucoma and Single-Hemifield Visual Field Defect. Ophthalmology 124, 709–719 (2017)
  46. Liu L, Jia Y, Takusagawa HL, et al. Optical Coherence Tomography Angiography of the Peripapillary Retina in Glaucoma. JAMA Ophthalmol. 2015;133(9):1045–52
  47. Wang X, Jiang C, Ko T, et al. Correlation between optic disc perfusion and glaucomatous severity in patients with open-angle glaucoma: an optical coherence tomography angiography study. Graefes Arch Clin Exp Ophthalmol. 2015;253(9):1557–64
  48. Flammer J, Orgul S. Optic nerve blood-flow abnormalities in glaucoma. Prog Retin Eye Res. 1998;17(2):267–89
  49. Weinreb RN, Bartsch DU, Freeman WR. Angiography of the glaucomatous optic nerve head. J Glaucoma. 1994;3(Suppl 1):S55–60
  50. Piltz-seymour JR, Grunwald JE, Hariprasad SM, Dupont J. Optic nerve blood flow is diminished in eyes of primary open-angle glaucoma suspects. Am J Ophthalmol. 2001;132(1):63–9
  51. Grunwald JE, Piltz J, Hariprasad SM, DuPont J. Optic nerve and choroidal circulation in glaucoma. Invest Ophthalmol Vis Sci. 1998;39(12):2329–36
  52. Tobe LA, Harris A, Hussain RM, et al. The role of retrobulbar and retinal circulation on optic nerve head and retinal nerve fibre layer structure in patients with open-angle glaucoma over an 18-month period. Br J Ophthalmol. 2015;99(5):609–12
  53. Munguba GC, Galeb S, Liu Y, et al. Nerve fiber layer thinning lags retinal ganglion cell density following crush axonopathy. Invest Ophthalmol Vis Sci. 2014;55(10):6505–13
  54. Chauhan BC, Stevens KT, Levesque JM, et al. Longitudinal in vivo imaging of retinal ganglion cells and retinal thickness changes following optic nerve injury in mice. PLoS One. 2012;7(6):e40352
  55. Adeleh Yarmohammadi, Linda M. Zangwill, Patricia Isabel C. Manalastas, Nathanael J. Fuller, Alberto Diniz-Filho, Luke J. Saunders, Min Hee Suh, Kyle Hasenstab, and Robert N. Weinreb. Peripapillary and Macular Vessel Density in Primary Open Angle Glaucoma Patients with Unilateral Visual Field Loss Ophthalmology. 2018 Apr; 125(4): 578–587
  56. Iwasaki M, Inomata H. Relation between superficial capillaries and foveal structures in the human retina. Invest Ophthalmol Vis Sci. 1986;27(12):1698–705
  57. Xu H, Yu J, Kong X, et al. Macular microvasculature alterations in patients with primary open-angle glaucoma: A cross-sectional study. Medicine (Baltimore) 2016;95(33):e4341
  58. Rao HL, Pradhan ZS, Weinreb RN, et al. Regional Comparisons of Optical Coherence Tomography Angiography Vessel Density in Primary Open-Angle Glaucoma. Am J Ophthalmol. 2016;171:75–83
  59. Garway-Heath DF, Caprioli J, Fitzke FW, Hitchings RA. Scaling the hill of vision: the physiological relationship between light sensitivity and ganglion cell numbers. Invest Ophthalmol Vis Sci. 2000;41(7):1774–82
  60. Joong Won Shin, Jiyun Lee, Junki Kwon, Younhye Jo, Daun Jeong, Relationship between macular vessel density and central visual field sensitivity at different glaucoma stages, BRJ Ophthalmology 2019;103: 1827-1833
  61. Soo Ji Jeon, Da-Young Shin, Hae-Young Lopilly Park & Chan Kee Park. Association of Retinal Blood Flow with Progression of Visual Field in Glaucoma, Nature SCIENTIFIC REPORTS | (2019) 9:16813
  62. Leske, M. C. et al. Factors for glaucoma progression and the effect of treatment: the early manifest glaucoma trial. Archives of ophthalmology (Chicago, Ill.: 1960) 121, (48–56 (2003)
  63. Coleman, A. L. & Miglior, S. Risk factors for glaucoma onset and progression. Surv Ophthalmol 53(Suppl1), S3–10 (2008)
  64. Nitta, K. et al. Prediction of Visual Field Progression in Patients with Primary Open-Angle Glaucoma, Mainly Including Normal Tension Glaucoma. Scientific reports 7, 15048 (2017).
  65. Chihara E, Dimitrova G, Amano H, Chihara T: Discriminatory power of superficial vessel density and prelaminar vascular flow index in eyes with glaucoma and ocular hypertension and normal eyes. Invest Opthalmol Vis Sci 2017;58:690.
  66. Holló G: Vessel density calculated from OCT angiography in 3 peripapillary sectors in nor- mal, ocular hypertensive, and glaucoma eyes. Eur J Ophthalmol 2016;26:e42–e45
  67. Holló G: Influence of large intraocular pressure reduction on peripapillary OCT vessel density in ocular hypertensive and glaucoma eyes. J Glaucoma 2017;26:e7–e10.
  68. Holló G: Relationship between OCT angiography temporal peripapillary vessel-density and octopus perimeter paracentral cluster mean defect. J Glaucoma 2017;26:397–402