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Abstract 

The black swan principle is a philosophy theory created by Nassim Nicholas Taleb that seeks to 

explain rare and unpredictable events, appearances that seem to defy logic or rational explanation (1). 

These events, termed "Black Swans," have been observed in various domains, including finance, 

public administration, infectious diseases, and ecology (2-4). The concept of Black Swans has gained 

recently, significant attention in academia and practice due to its relevance in understanding extreme 

and rare occurrences (5-7). The “black swan” concept has been used in genetics for the unexpected 

developments that genome sequencing would reveal and which could have consequences for 
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healthcare systems (e.g., increase in often unnecessary and inappropriate diagnostic investigations, 

increase in non-patients, etc.) (8-10).  

 

Keywords: Black Swan Principle; Genetics of Complex Diseases 

 

Complex Diseases 

Identifying a genetic mutation linked to a disease like osteoporosis could be the first step toward 

developing a treatment. However, the next step is to demonstrate that blocking a receptor or 

antagonizing an enzyme generates a phenotypic and possibly even medical effect. But this is not yet 

possible for the many complex diseases that affect humans.  Complex diseases are multifactorial 

conditions influenced by a combination of genetic, environmental, and lifestyle factors. These 

diseases often involve intricate interactions among multiple genes and environmental elements, 

making their etiology and pathogenesis challenging to unravel (11-13). The term "complex disease" 

encompasses a wide range of conditions, including autoimmune diseases, psychiatric disorders, 

metabolic diseases, and various chronic illnesses (13, 14). The genetic basis of complex diseases is 

often characterized by the involvement of multiple intermediate phenotypes, each with a component 

of quantitative inheritance, contributing to the overall pathogenesis (13). Complex diseases, unlike 

inherited or Mendelian which are generally single gene defects, are characterized by a quantitative 

phenotypic distribution, based on the interactive action of multiple genes, each of which would act 

with a small additive effect (polygenic inheritance) (15). This quantitative inheritance model is widely 

accepted to explain the transmission mechanism of many diseases common, which contribute 

significantly to the morbidity and mortality of the population (including various congenital defects 

and adult-onset pathologies, such as diabetes, hypertension, stroke, Alzheimer's disease). The current 

idea is that different genes, implicated in susceptibility, trigger the triggering effect of some harmful 

environmental factors. This idea has found confirmation in recent years in thousands of genomic 

studies, which have allowed to identify over 100,000 genetic variations associated with diseases and 

complex traits, which in recent years have been used to develop the so-called Polygenic Risk Scores 

(PRS), which measure the effects and therefore the weight of genomic variations on the phenotype, 

i.e. the susceptibility to developing a certain trait or disease(16). Variants needed to define a PRS are 

identified by genome-wide association studies (GWAS) (17). GWAS have significantly contributed 

to understanding the genetic basis of complex diseases. These studies have identified numerous 

susceptibility loci for various complex diseases, shedding light on the genetic architecture of 
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multifactorial disorders (18). GWAS have identified genomic biomarkers associated to diseases such 

as Crohn's disease, bipolar disorder, pulmonary diseases, schizophrenia, and age-related macular 

degeneration (19-22). However, it is important to note that the identified loci often account for only 

a small portion of the heritability of these diseases, leaving a substantial portion of the genetic 

contribution unexplained (“missing heritability”) (18). The "missing heritability" problem has been a 

subject of extensive research, and it has been attributed to the limited power of traditional linkage 

studies in detecting variants of modest effect (18, 23). In addition, the majority of existing PRS were 

developed from European data with limited transferability to other populations (e.g. African 

populations) (24). Some populations such as African ones have different genetic backgrounds and a 

genomic architecture and organization which have often led to non-replicable GWAS results or to 

false or erroneous associations. It is no coincidence, in fact, that extensive biobanks are being 

developed such as the "All of US Research Program" in the USA which collects biological samples 

and clinical information from different ethnic groups (25). Human genome is proving to be much 

more complex and the genetic relationships between different ethnic groups are greatly affected by 

interactions between groups of people which can significantly modify the allelic frequencies of genes, 

favoring the selection of some alleles. Recently, it has been shown that people with European ancestry, 

who were previously treated as a genetically homogeneous group, have clear evidence of mixed 

genetic lineages, known as “admixture.” Therefore, many GWAS-based association studies should be 

reviewed based on “mixing”(26). 

The Black Swan and Rare Variants 

GWAS are a valuable tool for understanding the biology of complex human traits and diseases, but 

associated variants rarely point directly to causal genes. The variants shown to be associated with a 

specific disorder, are very common in populations and are unlikely to demonstrate significant 

biochemical effects. GWAS, in fact, include variants that are shown to have only additive effects, 

excluding other types of genetic variations (e.g. rare variants, copy number variants). The single or 

combined effects (PRS) of the common variants used in  GWAS are quite small, typically with odds 

ratios less than 1.5 and often up to 1.1 (27). It is possible as suggested by Greg Gibson (28) that a 

substantial portion of the variance for complex diseases is due to relatively highly penetrant rare 

variants, whose allele frequency is typically less than 1%, most of which are recently derived alleles 

in the human population. Rare variants with very low allele frequencies not included in GWAS could 

also have large effect sizes (28). The allotment of rare alleles in a population, precisely their 

peculiarities and characteristics, does not follow the distribution of the classical normal curve, used 
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by Falconer's model (29) which assumes the existence of alleles with additive effects (15, 23, 28). 

For this reason, bell curves are in my opinion imperfect in assessing genomic risk in complex and 

multifactorial diseases. The normal distribution ignores the impact of rare alleles, which are 

considered infrequent and therefore unlikely and therefore should not be used to predict predictive 

risks of disease. Similarly to what Taleb Nassim proposed for economic phenomena (30), the bell 

curve ignores large deviations, and rare mutations can be considered large deviations with significant 

biological effects. Rare variants have larger effect sizes and are more susceptible to population 

dynamics and genetic drift. However, identifying true associations of rare variants with a complex 

disease, is difficult due to small effect sizes, the presence of technical artifacts, and heterogeneity in 

population structure. The cost-effective sequencing of the human genome and exome has allowed in 

recent years the identification of many rare genetic variations associated with complex and 

multifactorial diseases as well as quantitative and continuous traits such as height, lipid levels, left-

handedness, sleep-related traits (Table 1) (31-35). Compared to common variants, rare genetic 

variants are more likely to be functional (36) (37)and therefore can more easily lead to new biological 

and clinical insights. In many cases, the identification of rare alleles has led to understanding the 

pathogenesis of the disease and discovering new therapeutic targets. Very interesting was the 

discovery of rare alleles of genes associated with congenital defects of immunity in COVID-19 from 

SARS-CoV-2 infection (32, 38-41). The International Covid Human Genetic Effort Consortium 

(https://www.covidhge.com/) has demonstrated for the first time an enrichment in rare loss-of-

function (38) variants at 13 human loci known to govern the production and regulation of interferon 

molecules and how these mutations, underlying life-threatening COVID-19 pneumonia in patients 

without prior serious infection(40). The presence of rare alleles in these genes are at the basis of the 

serious multisystem inflammatory disease of children which during the SARS-CoV-2 pandemic 

unfortunately led to the death of healthy children such as Zyrin Foots, 10, who died after a two-week 

battle with COVID-19 (https://www.newsweek.com/10-year-old-covid-dies-after-mom-given-

choice-amputate-limbs-let-him-go-1639366)(42). The case of Zyrin Foots can be considered a black 

swan, a certainly unpredictable event due to the simultaneous presence of a rare genotype in a healthy 

boy who becomes infected with a new virus (SARS-CoV-2) which quickly leads to failure respiratory 

and death!  The discovery of inborn errors and mechanisms underlying rare infections, which led to 

the identification of rare monogenic determinants in related common infections, allowed Casanova 

and Abel (31) to contrive the definition “rare to common” which demonstrates the direct link of rare 

alleles to complex diseases such as infectious diseases. It is therefore important to focus on the rare 

variants that make the difference and not on the common variants. 
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Future perspectives  

Extended genome sequencing will allow us to continuously identify rare new variants in individuals 

and this will change the approach to complex and multifactorial diseases in the coming years. It is 

possible that the weight of rare variants on genomic analyzes will be combined with the PRS 

predictive score based on millions of SNPs to constitute a new and more precise associated genetic 

risk as hypothesized by Lali et al. (43). This new predictive tool will certainly be able to help us better 

understand the pathogenesis of complex diseases and produce new innovative drugs such as 

evolocumab, a monoclonal antibody that inhibits the expression of the PCSK9 gene by reducing 

cholesterol levels in subjects with familial hypercholesterolemia. This extraordinary result was 

possible thanks to the presence of two rare mutations (p.Tyr142Ter and p.Cys679Ter) of PCSK9, in 

some normal black subjects, which led to a reduction in average LDL cholesterol and the risk of 

coronary heart disease(44). 

The unique biological effects of rare alleles have now been found in the coding regions of analyzed 

genes. However, there is evidence that rare variants in non-coding regions could have a large impact 

on gene expression and disease (45, 46). Only the combined study between rare genetic variants and 

multi-omics data, including data on transcriptome, post-transcriptional regulation, epigenome, post-

translational protein modification, metabolome, and microbiome, will contribute in the future to 

improve our understanding of biological burden and effects "black swans" of our genome. But how 

many "black swans" exist in our genome? Reading a person's DNA, we can find millions of common 

variants and at least 25,000-50,000 rare ones; of these at least 70-80 are new mutations, that is, they 

are not inherited from the parents (de novo). Furthermore, we can find hundreds of lost or duplicated 

DNA segments, of often unknown significance. For this reason, the American Society of Genetics 

and Genomics (47) has developed guidelines indicating around seventy genes to be looked at with 

greater attention (actionable genes), i.e. genes that have clinical interest and are susceptible to possible 

therapeutic actions (47). A recent Icelandic study and based on the analysis of approximately 60,000 

individual genomes has made it possible to identify "actionable" genes in 4% of the people analyzed 

(48). An interesting aspect of this new study is the correlation with the average lifespan of carriers of 

these genes compared to non-carriers. On average, they observed that carriers of “actionable” genes 

associated with cancer had a shorter survival than non-carriers, by about three years. This study, 

although important, will have to be confirmed on other populations (Iceland is a genetically 

homogeneous population) and appropriately validated through the integration of family and 

behavioral data of the people analyzed (lifestyle, drugs used) before being able to use this information 
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for population screening. This confirms the decisive role of rare variants in determining or in any case 

directing a phenotype. 

Is it therefore absurd to think of characterizing them all and providing accurate diagnoses and 

predictions of future disease risk? Why not consider developing AI systems that can consider all 

genetic variants across the entire genome, including structural variants such as copy number 

variations, insertions, inversions, and translocations along with the functional impact of each variant? 

Of course, the calculation must also consider electronic health records, including digital images, data 

from health monitoring devices and other environmental exposures. Is it science fiction? No, 

advances in AI software and hardware, particularly deep learning algorithms and the graphics 

processing units (GPUs) that power their training, mean a specific type of AI algorithm is possible 

soon. artificial intelligence known as deep learning is used to process large and complex genomic 

datasets [103]. But managing this wealth of information requires the development of new training 

programs based on innovation and application of knowledge.  
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Table 1. Complex Diseases and Continues Traits Associated with the 

Enrichment of Rare Variants  

 

Phenotype Gene 

Human Handedness 

Neurodevelopmental disorders 

Severe adult-onset obesity 

Hidradenitis suppurativa  

Nicotine addiction 

 TUBB4B 

CUL3 

BSN, APBA1 

PSTPIP1 

CHRNB2 
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 Alzheimer  

Rheumatoid arthritis 

Age-related macular degeneration 

Schizophrenia 

Orofacial clefts (OFCs) 

Amyotrophic lateral sclerosis (ALS) 

Hyperlipidemia 

 

Lupus 

Blood pressure 

Diabetes 

Human height 

COVID-19 

 

 

 

Attention-deficit/hyperactivity disorder 

(ADHD)  

 

 

Sleep-related traits (sleep duration, insomnia 

symptoms, chronotype, daytime sleepiness, 

daytime napping, ease of getting up in the 

morning, snoring and sleep apnea)  

 

RELN, ABCA7 

 IL2RA, IL2RB. TYK2 

CF1,CFB, CEPT 

SETD1A 

 SEC24D 

SOD1, TARDBP, TBK1 

LDLR, PCSK9, APOC3, ANGPLT3, ABCG5, 

NPC1L1  

TNFAIP3, STAT4, IL10, TRAF3IP2, HCP5 

KIF3B 

GIGYF1 

HMGA1, MIR497HG 

IFNGR1, IFNGR2, IFNAR1, IFNAR2, 

IL12RB1, IRAK4, MYD88, STAT1 GOF, 

CXCR4, TBK1, TLR3, TLR7, IRF3, IRF7, 

IRF9 

ASXL3, DOT1L, DIP2C, KDM2A, KDM1A, 

KMT2B, SETDB1, SLC22A23, COL4A3BP, 

DET1 

 

ST3GAL1, ANKRD12, PLEKHM1, ZBTB21, 

WDR59 
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